In this paper, derived from Maxwell and fluid equations of plasmas, unified nonlinear wave equations are used to describe the parametric decay instability (PDI) in magnetized plasmas, and in view of mode-coupling, w...In this paper, derived from Maxwell and fluid equations of plasmas, unified nonlinear wave equations are used to describe the parametric decay instability (PDI) in magnetized plasmas, and in view of mode-coupling, we can obtain all the possible PDI channels. By solving the nonlinear equations with a mode-coupling method, we obtain the growth rate of the PDI, of which all of the three waves are ordinary mode (O-mode) or extraordinary mode (X-mode) wave. Under the dipole approximation, an explicit formula of the growth rate of the X-mode and the condition of the equilibrium density scale are obtained. According to the existence conditions of three X-mode waves, this kind of instability might exist in ECRH with the second harmonic X-mode wave.展开更多
Parametric decay instability(PDI)is an important process in ionospheric heating.This paper focuses on the frequency and wavevector matching condition in the initial PDI process,the subsequent cascade stage,and the gen...Parametric decay instability(PDI)is an important process in ionospheric heating.This paper focuses on the frequency and wavevector matching condition in the initial PDI process,the subsequent cascade stage,and the generation of strong Langmuir turbulence.A more general numerical model is established based on Maxwell equations and plasma dynamic equations by coupling highfrequency electromagnetic waves to low-frequency waves via ponderomotive force.The primary PDI,cascade process,and strong Langmuir turbulence are excited in the simulation.The matching condition in the initial PDI stage and cascade process is verified.The result indicates that the cascade ion acoustic wave may induce or accelerate the formation of cavitons and lead to the wavenumber spectrum being more enhanced at 2k_(L)(where k_(L) is the primary Langmuir wavenumber).The wavenumber spectra develop from discrete to continuous spectra,which is attributed to the caviton collapse and strong Langmuir turbulence.展开更多
The parametric decay instabilities (PDIs) of ion Bernstein wave with different input power levels are investigated via particle-in-cell simulation. It is found that the number of decay channels increases with the in...The parametric decay instabilities (PDIs) of ion Bernstein wave with different input power levels are investigated via particle-in-cell simulation. It is found that the number of decay channels increases with the input power. Resonant mode-mode couplings dominate for a low input power. With increasing the input power, the nonresonant PDIs appear to dissipate the energy of the injected wave and give rise to edge ion heating. The generated child waves couple with each other as well as the injected wave and /or act as a pump wave to excite new decay channels. As a result, the frequency spectrum is broadened with the increase of the input power.展开更多
High-power O-mode radio waves can excite artificial instabilities in the F region,according to experiments conducted at the European Incoherent Scatter Science Association(EISCAT)heating facility.The main instabilitie...High-power O-mode radio waves can excite artificial instabilities in the F region,according to experiments conducted at the European Incoherent Scatter Science Association(EISCAT)heating facility.The main instabilities include the parametric decay instability(PDI),oscillating two-stream instability(OTSI),and thermal parametric instability(TPI).The PDI and OTSI not only compete with each other,but also compete with the TPI,leading to a two-stage overshoot phenomenon:a miniovershoot occurs on a millisecond time scale after pump-on,followed by the main overshoot.We gain insight into the miniovershoot via a generalized Zakharov model,whereas the main overshoot can be observed as an enhanced plasma line overshoot phenomenon in incoherent scatter radar spectra.We can also observe that the zero-frequency ion line exists only in the initial heating period after a cold start and that the upshifted and downshifted ion lines behave irregularly in the spectra.The simulation results show that competition between the PDI and OTSI leads to an initial peak,which we named the pre-miniovershoot.The following processes,namely ion density caviton generation,and collapse and cascade in the development of the PDI,contribute to the miniovershoot phenomenon.展开更多
In this study,we present three experiments carried out at the EISCAT(European Incoherent Scatter Scientific Association)heating facility on October 29 and 30,2015.The results from the first experiment showed overshoot...In this study,we present three experiments carried out at the EISCAT(European Incoherent Scatter Scientific Association)heating facility on October 29 and 30,2015.The results from the first experiment showed overshoot during the O-mode heating period.The second experiment,which used cold-start X-mode heating,showed the generation of parametric decay instability,whereas overshoot was not observed.The third experiment used power-stepped X-mode heating with noticeable O-mode wave leakage.Parametric decay instability and oscillating two-stream instability were generated at the O-mode reflection height without the overshoot effect,which implies suppression of the thermal parametric instability with X-mode heating.We propose that the electron temperature increased because X-mode heating below the upper hybrid height decreased the growth rate of the thermal parametric instability.展开更多
In this study,we investigate the generation of parametric decay instability,Langmuir turbulence formation,and electron acceleration in ionospheric heating via a two-fluid model using the Fokker-Planck equation and Vla...In this study,we investigate the generation of parametric decay instability,Langmuir turbulence formation,and electron acceleration in ionospheric heating via a two-fluid model using the Fokker-Planck equation and Vlasov-Poisson system simulations.The simulation results of both the magnetofluid model and the kinetic model demonstrate the dynamics of electron acceleration.Further,the results of the Vlasov-Poisson simulations suggest the formation of electron holes in phase space at the same spatial scale as the Langmuir wave,which are shown to be related to electron acceleration.In addition,electron acceleration is enhanced through the extension of the wavenumber spectrum caused by strong Langmuir turbulence,leading to more electron holes in phase space.展开更多
基金supported by National Natural Science Foundation of China(Nos.10990214 and 115450)
文摘In this paper, derived from Maxwell and fluid equations of plasmas, unified nonlinear wave equations are used to describe the parametric decay instability (PDI) in magnetized plasmas, and in view of mode-coupling, we can obtain all the possible PDI channels. By solving the nonlinear equations with a mode-coupling method, we obtain the growth rate of the PDI, of which all of the three waves are ordinary mode (O-mode) or extraordinary mode (X-mode) wave. Under the dipole approximation, an explicit formula of the growth rate of the X-mode and the condition of the equilibrium density scale are obtained. According to the existence conditions of three X-mode waves, this kind of instability might exist in ECRH with the second harmonic X-mode wave.
基金supported by the National Natural Science Founda-tion of China(NSFC Grant Nos.42104150,42074187,41774162,and 41704155)the Foundation of the National Key Laboratory of Electromagnetic Environment(Grant No.6142403200303)+2 种基金the Chinese Academy of Sciences,Key Laboratory of Geospace Envi-ronment,the University of Science&Technology of China(Grant No.GE2020-01)the Fundamental Research Funds for the Central Universities(Grant No.2042021kf0020)the Excellent Youth Foundation of Hubei Provincial Natural Science Foundation(Grant No.2019CFA054).
文摘Parametric decay instability(PDI)is an important process in ionospheric heating.This paper focuses on the frequency and wavevector matching condition in the initial PDI process,the subsequent cascade stage,and the generation of strong Langmuir turbulence.A more general numerical model is established based on Maxwell equations and plasma dynamic equations by coupling highfrequency electromagnetic waves to low-frequency waves via ponderomotive force.The primary PDI,cascade process,and strong Langmuir turbulence are excited in the simulation.The matching condition in the initial PDI stage and cascade process is verified.The result indicates that the cascade ion acoustic wave may induce or accelerate the formation of cavitons and lead to the wavenumber spectrum being more enhanced at 2k_(L)(where k_(L) is the primary Langmuir wavenumber).The wavenumber spectra develop from discrete to continuous spectra,which is attributed to the caviton collapse and strong Langmuir turbulence.
基金Supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(NSFC No 11261140328 and NRF No 2012K2A2A6000443)the National Magnetic Confinement Fusion Science Program of China under Grant No 2013GB111002+1 种基金the National Natural Science Foundation of China under Grant Nos 11175212 and 11475220the Program of Fusion Reactor Physics and Digital Tokamak with the Chinese Academy of Sciences 'One-Three-Five' Strategic Planning
文摘The parametric decay instabilities (PDIs) of ion Bernstein wave with different input power levels are investigated via particle-in-cell simulation. It is found that the number of decay channels increases with the input power. Resonant mode-mode couplings dominate for a low input power. With increasing the input power, the nonresonant PDIs appear to dissipate the energy of the injected wave and give rise to edge ion heating. The generated child waves couple with each other as well as the injected wave and /or act as a pump wave to excite new decay channels. As a result, the frequency spectrum is broadened with the increase of the input power.
基金the National Natural Science Foundation of China(NSFC Grant Nos.42104150,42074187,41774162,and 41704155)the Foundation of the National Key Laboratory of the Electromagnetic Environment(Grant No.6142403200303)+2 种基金the Chinese Academy of Sciences,Key Laboratory of Geospace Environment,University of Science&Technology of China(Grant No.GE2020-01)the Fundamental Research Funds for the Central Universities(Grant No.2042021kf0020)the Excellent Youth Foundation of Hubei Provincial Natural Science Foundation(Grant No.2019CFA054).
文摘High-power O-mode radio waves can excite artificial instabilities in the F region,according to experiments conducted at the European Incoherent Scatter Science Association(EISCAT)heating facility.The main instabilities include the parametric decay instability(PDI),oscillating two-stream instability(OTSI),and thermal parametric instability(TPI).The PDI and OTSI not only compete with each other,but also compete with the TPI,leading to a two-stage overshoot phenomenon:a miniovershoot occurs on a millisecond time scale after pump-on,followed by the main overshoot.We gain insight into the miniovershoot via a generalized Zakharov model,whereas the main overshoot can be observed as an enhanced plasma line overshoot phenomenon in incoherent scatter radar spectra.We can also observe that the zero-frequency ion line exists only in the initial heating period after a cold start and that the upshifted and downshifted ion lines behave irregularly in the spectra.The simulation results show that competition between the PDI and OTSI leads to an initial peak,which we named the pre-miniovershoot.The following processes,namely ion density caviton generation,and collapse and cascade in the development of the PDI,contribute to the miniovershoot phenomenon.
基金EISCAT is an international scientific association supported by research organizations in China(China Research Institute of Radiowave Propagation(CRIRP)),Finland(Suomen Akatemia(SA)),Japan(National Institute of Polar Research(NIPR)and Solar-Terrestrial Environment Laboratory(STEL)),Norway(The Research Council of Norway(NFR)),Sweden(Swedish Research Council(VR)),and the United Kingdom(Natural Environment Research Council(NERC)).This work was supported by the National Natural Science Foundation of China(NSFC,grants 41204111,41574146,41774162,and 41704155)the China Postdoctoral Science Foundation(grant 2017M622504).The experiment described in this work was carried out by the Russian team led by N.F.Blagoveshchenskaya.The data used in this research are available through the EISCAT Madrigal database(http://www.eiscat.se/madrigal/)and EISCAT Dynasonde database(https://dynserv.eiscat.uit.no/).
文摘In this study,we present three experiments carried out at the EISCAT(European Incoherent Scatter Scientific Association)heating facility on October 29 and 30,2015.The results from the first experiment showed overshoot during the O-mode heating period.The second experiment,which used cold-start X-mode heating,showed the generation of parametric decay instability,whereas overshoot was not observed.The third experiment used power-stepped X-mode heating with noticeable O-mode wave leakage.Parametric decay instability and oscillating two-stream instability were generated at the O-mode reflection height without the overshoot effect,which implies suppression of the thermal parametric instability with X-mode heating.We propose that the electron temperature increased because X-mode heating below the upper hybrid height decreased the growth rate of the thermal parametric instability.
基金supported by the National Natural Science Foundation of China (NSFC Grant Nos. 42104150, 42074187, 41774162, and 41704155)the Foundation of the National Key Laboratory of Electromagnetic Environment (Grant No. 6142403200303)+3 种基金the Chinese Academy of Sciences, Key Laboratory of Geospace Environmentthe University of Science & Technology of China (Grant No. GE2020-01)the Fundamental Research Funds for the Central Universities (Grant No. 2042021kf0020)the Excellent Youth Foundation of Hubei Provincial Natural Science Foundation (Grant No. 2019CFA054)
文摘In this study,we investigate the generation of parametric decay instability,Langmuir turbulence formation,and electron acceleration in ionospheric heating via a two-fluid model using the Fokker-Planck equation and Vlasov-Poisson system simulations.The simulation results of both the magnetofluid model and the kinetic model demonstrate the dynamics of electron acceleration.Further,the results of the Vlasov-Poisson simulations suggest the formation of electron holes in phase space at the same spatial scale as the Langmuir wave,which are shown to be related to electron acceleration.In addition,electron acceleration is enhanced through the extension of the wavenumber spectrum caused by strong Langmuir turbulence,leading to more electron holes in phase space.