We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric downconversion in the periodically-poled lithium niobate on insulator(LNOI)waveguide.We analyze several variati...We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric downconversion in the periodically-poled lithium niobate on insulator(LNOI)waveguide.We analyze several variation models and our simulation results show that thickness variations in several nanometers can induce distinct effects on the central peak of the spectrum,such as narrowing,broadening,and splitting.We also prove that the effects of positive and negative variations can be canceled and thus lead to a variation-robust feature and an ultra-broad bandwidth.Our study may promote the development of on-chip photon sources in the LNOI platform,as well as opens up a way to engineer photon frequency state.展开更多
By properly selecting the time-dependent unitary transformation for the linear combination of the number operators, we construct a time-dependent invariant and derive the corresponding auxiliary equations for the dege...By properly selecting the time-dependent unitary transformation for the linear combination of the number operators, we construct a time-dependent invariant and derive the corresponding auxiliary equations for the degenerate and non-degenerate coupled parametric down-conversion system with driving term. By means of this invariant and the Lewis-Riesenfeld quantum invariant theory, we obtain closed formulae of the quantum state and the evolution operator of the system. We show that the time evolution of the quantum system directly leads to production of various generalized one- and two-mode combination squeezed states, and the squeezed effect is independent of the driving term of the Hamiltonian. In some special cases, the current solution can reduce to the results of the previous works.展开更多
The decoy-state quantum key distribution protocol suggested by Adachi et al. (Phys. Rev. Lett 99 180503 (2007)) is proven to be secure and feasible with current techniques. It owns two attractive merits, i.e., its...The decoy-state quantum key distribution protocol suggested by Adachi et al. (Phys. Rev. Lett 99 180503 (2007)) is proven to be secure and feasible with current techniques. It owns two attractive merits, i.e., its longer secure transmission distance and more convenient operation design. In this paper, we first improve the protocol with the aid of local operation and two-way classical communication (2-LOCC). After our modifications, the secure transmission distance is increased by about 20 km, which will make the protocol more practicable.展开更多
A four-wavelength Bragg reflection waveguide edge emitting diode based on intracavity spontaneous parametric down-conversion and four-wave mixing (FWM) processes is made. The structure and its tuning characteris- ti...A four-wavelength Bragg reflection waveguide edge emitting diode based on intracavity spontaneous parametric down-conversion and four-wave mixing (FWM) processes is made. The structure and its tuning characteris- tic are designed by the aid of FDTD mode solution. The laser structure is grown by molecular beam epitaxy and processed to laser diode through the semiconductor manufacturing technology. Fourier transform infrared spectroscopy is applied to record wavelength information. Pump around 1.071 μm, signal around 1.77μm, idler around 2.71 μm and FWM signal around 1.35μm are observed at an injection current of 560mA. The influ- ences of temperature, carrier density and pump wavelength on tuning characteristic are shown numerically and experimentally.展开更多
Parametric down-conversion(PDC) sources play an important role in quantum information processing, therefore characterizing their properties is necessary. Here we present a statistical model to assess the properties ...Parametric down-conversion(PDC) sources play an important role in quantum information processing, therefore characterizing their properties is necessary. Here we present a statistical model to assess the properties of the PDC source with certain distribution, such as the brightness and photon channel transmissions, we only need to measure the singles and coincidences counts in a few seconds. Furthermore, we validate the model by applying it to a PDC source generating highly non-degenerate photon pairs. The results of the experiment indicate that our method is more simple, efficient, and less time consuming.展开更多
In 3-mode Fock space we find a new tripartite entangled state |α,γ 】 λ,which make up a new quantum mechanical representation. The state |α,γ 】 λ, can be generated byusing the setup composing of a beam splitter...In 3-mode Fock space we find a new tripartite entangled state |α,γ 】 λ,which make up a new quantum mechanical representation. The state |α,γ 】 λ, can be generated byusing the setup composing of a beam splitter and a parametric down-conversion amplifier. Applicationof the state is briefly discussed.展开更多
The two-photon polarized entangled state is generated from the typeⅡspontaneous parametric down-conversion pumped by a femtosecond pulse.The two-photon interference is observed in the Hong-Ou-Mandel interferometer.Th...The two-photon polarized entangled state is generated from the typeⅡspontaneous parametric down-conversion pumped by a femtosecond pulse.The two-photon interference is observed in the Hong-Ou-Mandel interferometer.The high visibility of the interference is restored with narrow band interference filters placed in front of the detectors.展开更多
We report a fourth-order interference experiment in which pairs of photons are produced in spontaneous parametric down-conversion pumped by femtosecond pulses interfere in a Hong-Ou-Mandel interferometer.The visibilit...We report a fourth-order interference experiment in which pairs of photons are produced in spontaneous parametric down-conversion pumped by femtosecond pulses interfere in a Hong-Ou-Mandel interferometer.The visibilityof the interference is(64±4)%,exceeding the bound of 50%predicted by classical interference theory.展开更多
We studied the process of polariton conversion in a 3-mode nonlinear optomechanical system.Compared with the standard 2-mode optomechanical system,we find a much larger conversion rate of polariton modes can be achiev...We studied the process of polariton conversion in a 3-mode nonlinear optomechanical system.Compared with the standard 2-mode optomechanical system,we find a much larger conversion rate of polariton modes can be achieved under typical dissipation conditions.To obtain a transparent understanding of the relevant physical process,we show that in the large detuned case,the cavity can be eliminated adiabatically,resulting in a parametric down-conversion(PDC)interaction between two phononic polariton modes.By tuning cavity detuning,the nonlinear interaction can be enhanced with the frequency-matching condition.Results from analytical treatment based on the effective PDC model agree with the numerical simulation.Such a system provides potential applications in nonlinear phononics.展开更多
The spectral properties of entangled photon pairs generated via quasi-phased matching in spontaneous parametric down-conversion are proposed and demonstrated experimentally. A general mathematical model for evaluating...The spectral properties of entangled photon pairs generated via quasi-phased matching in spontaneous parametric down-conversion are proposed and demonstrated experimentally. A general mathematical model for evaluating the spectral properties is developed to obtain the spectrum shape and range of down-converted photons. The model takes into account the effects of phase mismatching due to non-ideal pumping and the relationship between crystal periodic modulation function and the incidence angle of the pump beam. The spectrum curve shape is determined by the discrete Fourier transform of a Gaussian pump beam and the integration of parametric down-conversion generated by an individual plane wave. An experiment is carried out with a PPLN non-linear crystal and dispersing optics, which shows a good consistency in their spectral ranges and shapes with our model predictions within the spectrum of 600–633 nm. This therefore illustrates that both the simulation model and the experimental process are reasonable. This novel method has potential applications in high-accuracy calibration in the wide spectrum using correlated photons.展开更多
In this paper,by using the second-order parametric down-conversion of the nonlinear crystal,the spin-1 state is simulated by the two-photon polarization entangled modes. Through adjusting the laser pulse power density...In this paper,by using the second-order parametric down-conversion of the nonlinear crystal,the spin-1 state is simulated by the two-photon polarization entangled modes. Through adjusting the laser pulse power density,the efficiency of second-order parametric down-conversion is enhanced. The intensity of the spin-1 state is 0.5/s. The fidelity of the state is up to F=0.891±0.002,and the contrast is C=17.3. The results provide a new method for Stern-Gerlach measurement on the spin-1 system.展开更多
We report an observation of the second-order correlation between twin beams generated by amplified spontaneous parametric down-conversion operating above threshold with kilowatt-level peak power, from a periodically p...We report an observation of the second-order correlation between twin beams generated by amplified spontaneous parametric down-conversion operating above threshold with kilowatt-level peak power, from a periodically poled Li Ta O3 crystal via a single-pass scheme. Photocurrent correlation was measured because of the bright photon streams, with raw visibility of 37.9% or 97.3% after electronic filtering. As expected in our theory, this correlation is robust and insensitive to parametric gain and detection loss, enabling important applications in optical communications, precision measurement, and nonlocal imaging.展开更多
Enhanced terahertz wave generation via a Stokes cascade process has been demonstrated using picosecond pulse pumped terahertz parametric generation at 1 kHz repetition rate.Clear cascade saturation of terahertz output...Enhanced terahertz wave generation via a Stokes cascade process has been demonstrated using picosecond pulse pumped terahertz parametric generation at 1 kHz repetition rate.Clear cascade saturation of terahertz output was observed,and the corresponding cascade-Stokes spectra were analyzed.The maximum terahertz wave average power was 22μW under a pump power of 30 W,whereas the maximum power conversion efficiency was 8×10^(-7)under a pump power of 21 W.The THz power fluctuation was measured to be about 1%in 20 min.This THz parametric source with a relatively stable output is suitable for a variety of practical applications.展开更多
We study the nonlinear stage of modulation instability(MI)in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically.Using the three-mode trunca...We study the nonlinear stage of modulation instability(MI)in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically.Using the three-mode truncation,we reveal the complex recurrence of parametric resonance(PR)breathers,where each recurrence is associated with two oscillation periods(PR period and internal oscillation period).The nonlinear stage of parametric instability admits the maximum energy exchange between the spectrum sidebands and central mode occurring outside the MI gain band.展开更多
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio...Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.展开更多
A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A ...A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A typical JTWPA consists of thousands of Josephson junctions connected in series to form a transmission line and hundreds of shunt LC resonators periodically loaded along the line for phase matching.Because the variation of these capacitors and inductors can be detrimental to their high-frequency characteristics,the fabrication of a JTWPA typically necessitates precise processing equipment.To guide the fabrication process and further improve the design for manufacturability,it is necessary to understand how each electronic component affects the amplifier.In this paper,we use the harmonic balance method to conduct a comprehensive study on the impact of nonuniformity and fabrication yield of the electronic components on the performance of a JTWPA.The results provide insightful and scientific guidance for device design and fabrication processes.展开更多
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ...The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.展开更多
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational...Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.展开更多
With the advancement of technology and the development of cities,urban planning and management methods are also constantly improving.From paper-based assignments to modern digitization,new technologies have enabled mo...With the advancement of technology and the development of cities,urban planning and management methods are also constantly improving.From paper-based assignments to modern digitization,new technologies have enabled more efficient design and management for cities.3D modeling can used to simulate the urban environment,which can assist in urban planning and management.However,large-scale modeling cannot be achieved through existing modeling methods,and there are still some shortcomings in the maintenance of the model.Therefore,this article proposes a Computer Generated Architecture(CGA)parametric 3D modeling method based on CityEngine.Research on expanding and customizing modeling rules to create indoor and outdoor modeling rule templates for buildings and methods for generating urban 3D models have been carried out.The results have shown that the completed model can be displayed on different platforms thanks to parameterized modeling.The model can be modified easily and directly applied to the analysis and decision-making of urban planning schemes.展开更多
This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviat...This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviation ratio of 1, was conducted for both small and large sample sizes. For small sample sizes, two main categories were established: equal and different sample sizes. Analyses were performed using Monte Carlo simulations with 20,000 repetitions for each scenario, and the simulations were evaluated using SAS software. For small sample sizes, the I. type error rate of the Siegel-Tukey test generally ranged from 0.045 to 0.055, while the I. type error rate of the Savage test was observed to range from 0.016 to 0.041. Similar trends were observed for Platykurtic and Skewed distributions. In scenarios with different sample sizes, the Savage test generally exhibited lower I. type error rates. For large sample sizes, two main categories were established: equal and different sample sizes. For large sample sizes, the I. type error rate of the Siegel-Tukey test ranged from 0.047 to 0.052, while the I. type error rate of the Savage test ranged from 0.043 to 0.051. In cases of equal sample sizes, both tests generally had lower error rates, with the Savage test providing more consistent results for large sample sizes. In conclusion, it was determined that the Savage test provides lower I. type error rates for small sample sizes and that both tests have similar error rates for large sample sizes. These findings suggest that the Savage test could be a more reliable option when analyzing variance differences.展开更多
基金Project supported by the National Key R&D Program of China(Grant No.2019YFA0705000)Leading-edge Technology Program of Jiangsu Natural Science Foundation,China(Grant No.BK20192001)the National Natural Science Foundation of China(Grant Nos.51890861,11690031,11974178,and 11627810).
文摘We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric downconversion in the periodically-poled lithium niobate on insulator(LNOI)waveguide.We analyze several variation models and our simulation results show that thickness variations in several nanometers can induce distinct effects on the central peak of the spectrum,such as narrowing,broadening,and splitting.We also prove that the effects of positive and negative variations can be canceled and thus lead to a variation-robust feature and an ultra-broad bandwidth.Our study may promote the development of on-chip photon sources in the LNOI platform,as well as opens up a way to engineer photon frequency state.
基金supported by the National Natural Science Foundation of China under Grant Nos.40674076 and 40474064the Hunan Natural Science Foundation of China under Grant No.07JJ3123the Scientific Research Fund of Hunan Provincial Education Department under Grant Nos.06C163,05B023,and 06B004
文摘By properly selecting the time-dependent unitary transformation for the linear combination of the number operators, we construct a time-dependent invariant and derive the corresponding auxiliary equations for the degenerate and non-degenerate coupled parametric down-conversion system with driving term. By means of this invariant and the Lewis-Riesenfeld quantum invariant theory, we obtain closed formulae of the quantum state and the evolution operator of the system. We show that the time evolution of the quantum system directly leads to production of various generalized one- and two-mode combination squeezed states, and the squeezed effect is independent of the driving term of the Hamiltonian. In some special cases, the current solution can reduce to the results of the previous works.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10905028/A050104)the Natural Science Foundation of Henan Province,China (Grant No. 092300410188)+1 种基金the Science Foundation of Hennan Provincial Education Department (Grant No. 2010A140010)Youth Fund of Luoyang Normal College
文摘The decoy-state quantum key distribution protocol suggested by Adachi et al. (Phys. Rev. Lett 99 180503 (2007)) is proven to be secure and feasible with current techniques. It owns two attractive merits, i.e., its longer secure transmission distance and more convenient operation design. In this paper, we first improve the protocol with the aid of local operation and two-way classical communication (2-LOCC). After our modifications, the secure transmission distance is increased by about 20 km, which will make the protocol more practicable.
基金Supported by the National Key Basic Research Program of China under Grant Nos 2013CB933304 and 2014CB643904the National Natural Science Foundation of China under Grant Nos 61435012 and 61274125the Strategic Priority Research Program(B) of Chinese Academy of Sciences under Grant No XDB01010200
文摘A four-wavelength Bragg reflection waveguide edge emitting diode based on intracavity spontaneous parametric down-conversion and four-wave mixing (FWM) processes is made. The structure and its tuning characteris- tic are designed by the aid of FDTD mode solution. The laser structure is grown by molecular beam epitaxy and processed to laser diode through the semiconductor manufacturing technology. Fourier transform infrared spectroscopy is applied to record wavelength information. Pump around 1.071 μm, signal around 1.77μm, idler around 2.71 μm and FWM signal around 1.35μm are observed at an injection current of 560mA. The influ- ences of temperature, carrier density and pump wavelength on tuning characteristic are shown numerically and experimentally.
基金Project supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant Nos.XDB01030100 and XDB01030300)the National Key Research and Development Program of China(Grant No.2016YFA0302600)the National Natural Science Foundation of China(Grant Nos.61475148 and 61575183)
文摘Parametric down-conversion(PDC) sources play an important role in quantum information processing, therefore characterizing their properties is necessary. Here we present a statistical model to assess the properties of the PDC source with certain distribution, such as the brightness and photon channel transmissions, we only need to measure the singles and coincidences counts in a few seconds. Furthermore, we validate the model by applying it to a PDC source generating highly non-degenerate photon pairs. The results of the experiment indicate that our method is more simple, efficient, and less time consuming.
文摘In 3-mode Fock space we find a new tripartite entangled state |α,γ 】 λ,which make up a new quantum mechanical representation. The state |α,γ 】 λ, can be generated byusing the setup composing of a beam splitter and a parametric down-conversion amplifier. Applicationof the state is briefly discussed.
基金Supported by the National Natural Science Foundation of China under Grant No.19874056the National Natural Science Foundation for Youth of China under Grant No.69907005。
文摘The two-photon polarized entangled state is generated from the typeⅡspontaneous parametric down-conversion pumped by a femtosecond pulse.The two-photon interference is observed in the Hong-Ou-Mandel interferometer.The high visibility of the interference is restored with narrow band interference filters placed in front of the detectors.
基金Supported by National Natural Science Foundation of China(Grant No.19874056)National Natural Science Foundation of China for Youth(Grant No.69907005).
文摘We report a fourth-order interference experiment in which pairs of photons are produced in spontaneous parametric down-conversion pumped by femtosecond pulses interfere in a Hong-Ou-Mandel interferometer.The visibilityof the interference is(64±4)%,exceeding the bound of 50%predicted by classical interference theory.
基金support from the NSFC(Grant No.12275331)the Penghuanwu Innovative Research Center(Grant No.12047503)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD031602)。
文摘We studied the process of polariton conversion in a 3-mode nonlinear optomechanical system.Compared with the standard 2-mode optomechanical system,we find a much larger conversion rate of polariton modes can be achieved under typical dissipation conditions.To obtain a transparent understanding of the relevant physical process,we show that in the large detuned case,the cavity can be eliminated adiabatically,resulting in a parametric down-conversion(PDC)interaction between two phononic polariton modes.By tuning cavity detuning,the nonlinear interaction can be enhanced with the frequency-matching condition.Results from analytical treatment based on the effective PDC model agree with the numerical simulation.Such a system provides potential applications in nonlinear phononics.
基金supported by the National 863 Program of China(No.2015AA123702)the National Natural Science Foundations of China(Nos.11204318 and61275173)the National Defense Science and Technology Foundation(No.J2920130004)
文摘The spectral properties of entangled photon pairs generated via quasi-phased matching in spontaneous parametric down-conversion are proposed and demonstrated experimentally. A general mathematical model for evaluating the spectral properties is developed to obtain the spectrum shape and range of down-converted photons. The model takes into account the effects of phase mismatching due to non-ideal pumping and the relationship between crystal periodic modulation function and the incidence angle of the pump beam. The spectrum curve shape is determined by the discrete Fourier transform of a Gaussian pump beam and the integration of parametric down-conversion generated by an individual plane wave. An experiment is carried out with a PPLN non-linear crystal and dispersing optics, which shows a good consistency in their spectral ranges and shapes with our model predictions within the spectrum of 600–633 nm. This therefore illustrates that both the simulation model and the experimental process are reasonable. This novel method has potential applications in high-accuracy calibration in the wide spectrum using correlated photons.
基金supported by the Natural Science Foundation of China(Nos.11174224,11404246 and 11447225)the Natural Science Foundation of Shandong Province(Nos.ZR2013FM001,2013SJGZ10,BS2015DX015 and ZR2014JL029)the Science and Technology Development Program of Shandong Province(Nos.2011YD01049 and 2013YD01016)
文摘In this paper,by using the second-order parametric down-conversion of the nonlinear crystal,the spin-1 state is simulated by the two-photon polarization entangled modes. Through adjusting the laser pulse power density,the efficiency of second-order parametric down-conversion is enhanced. The intensity of the spin-1 state is 0.5/s. The fidelity of the state is up to F=0.891±0.002,and the contrast is C=17.3. The results provide a new method for Stern-Gerlach measurement on the spin-1 system.
基金the National Key R&D Program of China(Nos.2019YFA0705000 and 2017YFA0303700)the National Natural Science Foundation of China(Nos.51890861,11690031,11627810,11674169,and 11974178).
文摘We report an observation of the second-order correlation between twin beams generated by amplified spontaneous parametric down-conversion operating above threshold with kilowatt-level peak power, from a periodically poled Li Ta O3 crystal via a single-pass scheme. Photocurrent correlation was measured because of the bright photon streams, with raw visibility of 37.9% or 97.3% after electronic filtering. As expected in our theory, this correlation is robust and insensitive to parametric gain and detection loss, enabling important applications in optical communications, precision measurement, and nonlocal imaging.
基金funded by the National Natural Science Foundation of China (Grant Nos.U22A20353,U22A20123,62175182,and 62275193)Daheng Atlas (Beijing)Laser Technology Co.Ltd.for their support。
文摘Enhanced terahertz wave generation via a Stokes cascade process has been demonstrated using picosecond pulse pumped terahertz parametric generation at 1 kHz repetition rate.Clear cascade saturation of terahertz output was observed,and the corresponding cascade-Stokes spectra were analyzed.The maximum terahertz wave average power was 22μW under a pump power of 30 W,whereas the maximum power conversion efficiency was 8×10^(-7)under a pump power of 21 W.The THz power fluctuation was measured to be about 1%in 20 min.This THz parametric source with a relatively stable output is suitable for a variety of practical applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175178 and 12247103)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2022KJXX-71)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSY016).
文摘We study the nonlinear stage of modulation instability(MI)in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically.Using the three-mode truncation,we reveal the complex recurrence of parametric resonance(PR)breathers,where each recurrence is associated with two oscillation periods(PR period and internal oscillation period).The nonlinear stage of parametric instability admits the maximum energy exchange between the spectrum sidebands and central mode occurring outside the MI gain band.
基金Project supported by the National Natural Science Foundation of China (Nos.12002195 and 12372015)the National Science Fund for Distinguished Young Scholars of China (No.12025204)the Program of Shanghai Municipal Education Commission of China (No.2019-01-07-00-09-E00018)。
文摘Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.
基金support from the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No.2019319)support from the Start-up Foundation of Suzhou Institute of Nano-Tech and Nano-Bionics,CAS,Suzhou (Grant No.Y9AAD110)。
文摘A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A typical JTWPA consists of thousands of Josephson junctions connected in series to form a transmission line and hundreds of shunt LC resonators periodically loaded along the line for phase matching.Because the variation of these capacitors and inductors can be detrimental to their high-frequency characteristics,the fabrication of a JTWPA typically necessitates precise processing equipment.To guide the fabrication process and further improve the design for manufacturability,it is necessary to understand how each electronic component affects the amplifier.In this paper,we use the harmonic balance method to conduct a comprehensive study on the impact of nonuniformity and fabrication yield of the electronic components on the performance of a JTWPA.The results provide insightful and scientific guidance for device design and fabrication processes.
基金The Construction S&T Project of the Department of Transportation of Sichuan Province(Grant No.2023A02)the National Natural Science Foundation of China(No.52109135).
文摘The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.
基金supported by the National Key R&D Program of China under Grant No.2021ZD0110400.
文摘Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.
文摘With the advancement of technology and the development of cities,urban planning and management methods are also constantly improving.From paper-based assignments to modern digitization,new technologies have enabled more efficient design and management for cities.3D modeling can used to simulate the urban environment,which can assist in urban planning and management.However,large-scale modeling cannot be achieved through existing modeling methods,and there are still some shortcomings in the maintenance of the model.Therefore,this article proposes a Computer Generated Architecture(CGA)parametric 3D modeling method based on CityEngine.Research on expanding and customizing modeling rules to create indoor and outdoor modeling rule templates for buildings and methods for generating urban 3D models have been carried out.The results have shown that the completed model can be displayed on different platforms thanks to parameterized modeling.The model can be modified easily and directly applied to the analysis and decision-making of urban planning schemes.
文摘This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviation ratio of 1, was conducted for both small and large sample sizes. For small sample sizes, two main categories were established: equal and different sample sizes. Analyses were performed using Monte Carlo simulations with 20,000 repetitions for each scenario, and the simulations were evaluated using SAS software. For small sample sizes, the I. type error rate of the Siegel-Tukey test generally ranged from 0.045 to 0.055, while the I. type error rate of the Savage test was observed to range from 0.016 to 0.041. Similar trends were observed for Platykurtic and Skewed distributions. In scenarios with different sample sizes, the Savage test generally exhibited lower I. type error rates. For large sample sizes, two main categories were established: equal and different sample sizes. For large sample sizes, the I. type error rate of the Siegel-Tukey test ranged from 0.047 to 0.052, while the I. type error rate of the Savage test ranged from 0.043 to 0.051. In cases of equal sample sizes, both tests generally had lower error rates, with the Savage test providing more consistent results for large sample sizes. In conclusion, it was determined that the Savage test provides lower I. type error rates for small sample sizes and that both tests have similar error rates for large sample sizes. These findings suggest that the Savage test could be a more reliable option when analyzing variance differences.