期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Assemblage characteristics of clay minerals and its implications to evolution of eolian dust input to the Parece Vela Basin since 1.95 Ma 被引量:6
1
作者 明洁 李安春 +4 位作者 黄杰 万世明 孟庆勇 蒋富清 闫文文 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第1期174-186,共13页
To understand the provenance and evolution of eolian input in the last 1.95 Ma in the Parece Vela Basin in the eastern Philippine Sea, the clay mineral assemblage of a gravity core PV090510 from the basin was investig... To understand the provenance and evolution of eolian input in the last 1.95 Ma in the Parece Vela Basin in the eastern Philippine Sea, the clay mineral assemblage of a gravity core PV090510 from the basin was investigated using paleogeomagnetic dating and X-ray diffraction. The assemblage of the core mainly consisted of smectite (-46%) and illite (-40%), with some chlorite (-10%) and kaolinite (-4%). Analysis of the provenance of these minerals suggested that smectite was mainly derived from volcanic rocks of the Mariana Arc, while illite, chlorite, and kaolinite were mainly transported as eolian dust by the East Asian monsoon from central Asia. We used the ratio of (illite+chlorite+kaolinite)/smectite as a proxy for Asian eolian input to the Parece Vela Basin since 1.95 Ma. This ratio followed glacial and interglacial cycles and was consistent with the intensity of the East Asian monsoon and aridity of central Asia since 1.95 Ma. The changes of the ratio reflected three different stages of the East Asian monsoon and provenance climate. 展开更多
关键词 eolian dust East Asian winter monsoon clay mineral PROVENANCE parece Vela Basin
下载PDF
Source Lithology and Magmatic Processes Recorded in the Mineral of Basalts from the Parece Vela Basin 被引量:4
2
作者 YUAN Long YAN Quanshu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第6期1991-2006,共16页
Since the Early Cenozoic,the Philippine Sea Plate(PSP)has undergone a complex tectonic evolution.During this period the Parece Vela Basin(PVB)was formed by seafloor spreading in the back-arc region of the proto-Izu-Bo... Since the Early Cenozoic,the Philippine Sea Plate(PSP)has undergone a complex tectonic evolution.During this period the Parece Vela Basin(PVB)was formed by seafloor spreading in the back-arc region of the proto-Izu-Bonin-Mariana(IBM)arc.However,until now,studies of the geological,geophysical,and tectonic evolution of the PVB have been rare.In this study,we obtained in situ trace element and major element compositions of minerals in basalts collected from two sites in the southern part of the PVB.The results reveal that the basalts from site CJ09-63 were likely formed via~10%partial melting of spinel-garnet lherzolite,while the basalts from site CJ09-64 were likely formed via 15%–25%partial melting of garnet lherzolite.The order of mineral crystallization for the basalts from site CJ09-64 was olivine,spinel,clinopyroxene,and plagioclase,while the plagioclase in the basalts from site CJ09-63 crystallized earlier than the clinopyroxene.Using a plagioclase-liquid hygrometer and an olivine-liquid oxybarometer,we determined that the basalts in this study have high H2O contents and oxygen fugacities,suggesting that the magma source of the Parece Vela basalts was affected by subduction components,which is consistent with the trace element composition of whole rock. 展开更多
关键词 source lithology magmatic processes subduction components back-arc basin basalts parece Vela Basin
下载PDF
Cleaning of Marine Sediment Samples for Large Diatom Stable Isotope Analysis 被引量:1
3
作者 熊志方 李铁刚 Xavier Crosta 《Journal of Earth Science》 SCIE CAS CSCD 2012年第2期161-172,共12页
Diatom stable isotope analysis offers considerable potential in palaeoceanography, par-ticularly where carbonate material is scarce or absent. However, extracting pure diatom frustules free of external labile organic ... Diatom stable isotope analysis offers considerable potential in palaeoceanography, par-ticularly where carbonate material is scarce or absent. However, extracting pure diatom frustules free of external labile organic matter from marine sediments is an essential requirement for their applica-tions as paleoenvironmental proxies. Here, based largely on previous work, we developed a method in-cluding physical separation and chemical oxidation steps to concentrate and clean pure large diatoms from laminated diatom mat and diatomaceous clay sediment samples for their stable isotope analysis. Using the physical separation techniques consisting of the removal of carbonate and excess organic matter, sieving, differential settling, and heavy liquid floatation, pure diatoms can be successfully iso-lated from the sediment samples with opal concentration more than 10%. Subsequent time oxidation experiment shows that labile organic matter coating pure diatom valves can be effectively removed with 30% H2O2 at 65 ℃ for 2 h. Measurements of δ13C after every step of physical separation demonstrate that contaminants and lost diatoms can influence the original diatom stable isotope signal, highlighting the importance of a visual check for dominant diatom size in the initial sample and purity in the final sample. Although the protocol described here was only applied to diatom mats or diatom oozes con-taining large diatoms (Ethmodiscus rex), we believe that this method can be adapted to common dia-toms of general marine sediment samples. 展开更多
关键词 large diatom stable isotope physical separation chemical oxidation parece Vela basin palaeoceanography.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部