期刊文献+
共找到2,325篇文章
< 1 2 117 >
每页显示 20 50 100
A FLEXIBLE OBJECTIVE-CONSTRAINT APPROACH AND A NEW ALGORITHM FOR CONSTRUCTING THE PARETO FRONT OF MULTIOBJECTIVE OPTIMIZATION PROBLEMS 被引量:1
1
作者 N.HOSEINPOOR M.GHAZNAVI 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期702-720,共19页
In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr... In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems. 展开更多
关键词 multiobjective optimization pareto front SCALARIZATION objective-constraint approach proper efficient solution
下载PDF
Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier
2
作者 JunWang Linxi Zhang +4 位作者 Hao Zhang Funan Peng Mohammed A.El-Meligy Mohamed Sharaf Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1281-1299,共19页
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly... The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently. 展开更多
关键词 Multi-objective evolutionary optimization algorithm decision variables grouping extreme point pareto frontier
下载PDF
PARETO FRONT CAPTURE USING DETERMINISTIC OPTIMIZATION METHODS IN MULTI-CRITERION AERODYNAMIC DESIGN
3
作者 唐智礼 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第2期81-86,共6页
Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary a... Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency. 展开更多
关键词 multi-criterion design pareto front deterministic optimization methods AERODYNAMICS
下载PDF
A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts 被引量:24
4
作者 Yicun Hua Qiqi Liu +1 位作者 Kuangrong Hao Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期303-318,I0001-I0004,共20页
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed... Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested. 展开更多
关键词 Evolutionary algorithm machine learning multi-objective optimization problems(MOPs) irregular pareto fronts
下载PDF
On ε-Constraint Based Methods for the Generation of Pareto Frontiers
5
作者 Kenneth Chircop David Zammit-Mangion 《Journal of Mechanics Engineering and Automation》 2013年第5期279-289,共11页
Over the years, a number of methods have been proposed for the generation of uniform and globally optimal Pareto frontiers in multi-objective optimization problems. This has been the case irrespective of the problem d... Over the years, a number of methods have been proposed for the generation of uniform and globally optimal Pareto frontiers in multi-objective optimization problems. This has been the case irrespective of the problem definition. The most commonly applied methods are the normal constraint method and the normal boundary intersection method. The former suffers from the deficiency of an uneven Pareto set distribution in the case of vertical (or horizontal) sections in the Pareto frontier, whereas the latter suffers from a sparsely populated Pareto frontier when the optimization problem is numerically demanding (ill-conditioned). The method proposed in this paper, coupled with a simple Pareto filter, addresses these two deficiencies to generate a uniform, globally optimal, well-populated Pareto frontier for any feasible bi-objective optimization problem. A number of examples are provided to demonstrate the performance of the algorithm. 展开更多
关键词 pareto frontier multiobjective optimization scalarization methods ε-constraint methods design optimization.
下载PDF
An Approach to Continuous Approximation of Pareto Front Using Geometric Support Vector Regression for Multi-objective Optimization of Fermentation Process 被引量:1
6
作者 吴佳欢 王建林 +1 位作者 于涛 赵利强 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第10期1131-1140,共10页
The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to ov... The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to overcome these problems, an approach to continuous approximation of Pareto front using geometric support vector regression is presented. The regression model of the small size approximate discrete Pareto front is constructed by geometric support vector regression modeling and is described as the approximate continuous Pareto front. In the process of geometric support vector regression modeling, considering the distribution characteristic of Pareto optimal points, the separable augmented training sample sets are constructed by shifting original training sample points along multiple coordinated axes. Besides, an interactive decision-making(DM)procedure, in which the continuous approximation of Pareto front and decision-making is performed interactively, is designed for improving the accuracy of the preferred Pareto optimal point. The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem. In addition,combined with the interactive decision-making procedure, the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process. The experimental results show that the generated approximate continuous Pareto front has good accuracy and completeness. Compared with the multi-objective evolutionary algorithm with large size population, a more accurate preferred Pareto optimal point can be obtained from the approximate continuous Pareto front with less computation and shorter running time. The operation strategy corresponding to the final preferred Pareto optimal point generated by the interactive DM procedure can improve the production indexes of the fermentation process effectively. 展开更多
关键词 Continuous approximation of pareto front GEOMETRIC support vector regression Interactive DECISION-MAKING procedure FED-BATCH FERMENTATION process
下载PDF
考虑Pareto最优的列车运行图与维修天窗协调优化 被引量:2
7
作者 张哲铭 何世伟 +3 位作者 李光晔 赵子琪 王攸妙 周汉 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第3期949-958,共10页
列车运行图与维修天窗之间的冲突始终无法避免,且维修天窗开设时间的长短显著影响列车总运行时间。针对此问题,综合考虑维修天窗对列车运行造成的限速约束、车站到发线数量约束等,建立列车总运行时间最小,以及维修天窗实际开设时长与理... 列车运行图与维修天窗之间的冲突始终无法避免,且维修天窗开设时间的长短显著影响列车总运行时间。针对此问题,综合考虑维修天窗对列车运行造成的限速约束、车站到发线数量约束等,建立列车总运行时间最小,以及维修天窗实际开设时长与理想时长总偏差最小的双目标混合整数规划模型;对困难约束设置中间辅助变量将模型线性化以提高求解效率,并设计约束转换算法求解双目标模型的Pareto最优;微观化处理铁路线,将站内资源和站间资源细化为一系列行车资源单元,得到更加符合实际旅客运输需求的运行图。以某地区铁路线夜间开行列车及维修天窗开设计划为研究背景,调用商业软件求解双目标函数模型的Pareto最优,并对双目标模型的最小支配解和最优支配解进行对比分析;针对最优支配解下的列车进入、离开行车资源单元的时间、停站作业时间及维修天窗的开始时间及开设时长,绘制列车运行图。求解结果表明:模型在满足维修天窗最小开设时长的同时,能够兼顾列车运行总时间最小和维修天窗开设时长更充裕。基于最优支配解绘制的列车运行图表明:微观路网下的列车运行时刻表优化结果更符合实际旅客运输生产作业需要。研究结果可为铁路运营管理部门进一步优化列车运行图编制与维修天窗开设提供参考。 展开更多
关键词 铁路运输 列车运行图 维修天窗 到发线数量 约束转换算法 pareto最优
下载PDF
面向供应链分销的多维空间Pareto边界自动谈判模型研究 被引量:1
8
作者 曹慕昆 杨荇贻 党圣洁 《管理工程学报》 CSSCI CSCD 北大核心 2024年第3期227-239,共13页
随着电子商务的快速发展,自动谈判逐渐成为提升供应链系统效率的一种手段。为了优化多方参与的供应链分销谈判应用,本文将多边多属性谈判问题转化为多目标优化模型,采用改进的非支配遗传算法NSGA-Ⅲ计算多维空间的Pareto边界;然后,设计... 随着电子商务的快速发展,自动谈判逐渐成为提升供应链系统效率的一种手段。为了优化多方参与的供应链分销谈判应用,本文将多边多属性谈判问题转化为多目标优化模型,采用改进的非支配遗传算法NSGA-Ⅲ计算多维空间的Pareto边界;然后,设计多线程谈判模型,将参与多方谈判的买卖各方拆解为多个双边谈判线程,分别在多维Pareto边界上进行谈判;进而,采用动态时间依赖策略(DTD),使Agent根据对方报价在Pareto边界上动态调整让步策略,快速达成协议。为验证模型的有效性,本文进行了大量模拟自动谈判实验。实验结果表明,所提出的改进算法和谈判流程优于领域最新研究成果,能有效提升多边多属性谈判效率,有助于多方达成共赢局面。 展开更多
关键词 供应链分销 多边多属性谈判 遗传算法 pareto边界 AGENT
下载PDF
Pareto Front Analysis Method for Optimization of PV Inverter Based Volt/Var Control Considering Inverter Lifetime
9
作者 Qingmian Chai Cuo Zhang +2 位作者 Yan Xu Zhao Yang Dong Rui Zhang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第1期111-121,共11页
Photovoltaic(PV)inverter-based volt/var control(VVC)is highly promising to tackle the emerging voltage regulation challenges brought by increasing PV penetration.However,PV inverter operational reliability has arisen ... Photovoltaic(PV)inverter-based volt/var control(VVC)is highly promising to tackle the emerging voltage regulation challenges brought by increasing PV penetration.However,PV inverter operational reliability has arisen as a critical concern for practical VVC implementation.This paper proposes a new PV inverter based VVC optimization model and a Pareto front analysis method for maintaining a satisfactory inverter lifetime.First,reliability of the vulnerable DC-link capacitor inside a PV inverter is analyzed,and long-term VVC impact on inverter operational reliability is identified.Second,a multi-objective PV inverter based VVC optimization model is proposed for minimizing both inverter apparent power output and network power loss with a weighting factor.Third,a Pareto front analysis method is developed to visualize the impact of the weighting factor on VVC performance and inverter reliability,thus determining the effective weighting factor to reduce network power loss with expected inverter lifetime.Effectiveness of the proposed VVC optimization model and Pareto front analysis method are verified in a case study. 展开更多
关键词 Distribution network inverter reliability analysis pareto front analysis photovoltaic stochastic optimization volt/var control
原文传递
基于Pareto蚁群算法的双目标路径规划研究
10
作者 李明海 杨天鹏 +1 位作者 张雪婷 杨一帆 《工业安全与环保》 2024年第5期86-91,共6页
针对复杂建筑环境人员应急疏散单一路径不能满足火灾环境变化需求的问题,基于改进蚁群算法,结合Pareto双目标解集思想,提出一种组合优化解集的双目标蚁群算法,通过排序优化的思想,实现人员多路径动态疏散规划。在构造Pareto解集的阶段... 针对复杂建筑环境人员应急疏散单一路径不能满足火灾环境变化需求的问题,基于改进蚁群算法,结合Pareto双目标解集思想,提出一种组合优化解集的双目标蚁群算法,通过排序优化的思想,实现人员多路径动态疏散规划。在构造Pareto解集的阶段协同考虑疏散路径长度以及火灾风险程度2个优化目标,计算各个解之间的支配关系。利用排序优化蚁群算法的正反馈机制将各组解的信息素按一定比例作为最优路径信息素的积累,加快解集的寻找。最后将其与传统双目标蚁群算法相比较,结果表明:优化后的双目标算法更加适合复杂建筑人员疏散路径规划问题,在寻找多组满足要求解的同时展示目标之间的利弊关系,供决策者选择合适的路径,提高疏散效率。 展开更多
关键词 蚁群算法 pareto解集 多路径规划 火灾风险 路径长度
下载PDF
Pareto解集旋转的分类多策略预测动态多目标优化
11
作者 李二超 刘辰淼 《计算机工程与应用》 CSCD 北大核心 2024年第22期87-104,共18页
为更有效地解决Pareto解集(Pareto set,PS)旋转的动态多目标优化问题,提出PS旋转的分类多策略预测方法(rotation-based forecasting method,RFM)。将PS的旋转类型分为PS中心点旋转、PS原点旋转和非标准旋转;针对以上不同的PS旋转类型,... 为更有效地解决Pareto解集(Pareto set,PS)旋转的动态多目标优化问题,提出PS旋转的分类多策略预测方法(rotation-based forecasting method,RFM)。将PS的旋转类型分为PS中心点旋转、PS原点旋转和非标准旋转;针对以上不同的PS旋转类型,自适应地选择合适的预测模型,建立不同点集的时间序列,为后续进化提供初始种群。引入拉丁超立方策略(Latin hypercube strategy,LHS)生成的随机种群与上述预测种群共同构建新种群,保证种群的多样性。为验证算法的有效性,将RFM算法与DNSGA-II、PPS、SPPS和MMP算法在8个标准的动态测试函数上进行实验对比。实验结果表明,RFM算法取得了6个最优IGD值、7个最优SP值、3个最优MS值,证明了RFM算法可以更有效地解决基于PS旋转的动态多目标优化问题。同时验证了RFM算法的普适性,在FDA系列函数上进行实验对比,实验结果表明,该算法在处理非旋转的动态多目标优化问题中仍具有较优性能。 展开更多
关键词 动态多目标优化 进化算法 分类预测 pareto解集旋转
下载PDF
双边定时截尾下Pareto分布的参数的极大似然估计的EM算法
12
作者 田霆 刘次华 《电子产品可靠性与环境试验》 2024年第3期52-54,共3页
给出了当寿命分布为Pareto分布时,双边定时截尾寿命试验下形状参数的极大似然估计。由于似然方程形式较复杂,无法得到参数的显式表达式。但可证明此极大似然估计是唯一存在的,并利用EM算法求出了此参数的一种估计。
关键词 pareto分布 双边定时截尾 极大似然估计 EM算法
下载PDF
Pareto法分析66例急性中毒住院儿童病例特点及药学建议
13
作者 刘艳 田峰 《中国处方药》 2024年第5期80-83,共4页
目的通过分析急性中毒住院儿童病例,总结病例特点及规律,为预防和减少儿童急性中毒提供科学依据。方法采用帕累托图(Pareto)法回顾性统计分析医院因急性中毒而收治住院的66例儿童病例资料,对患儿年龄分布、中毒季节、引起患儿中毒的品... 目的通过分析急性中毒住院儿童病例,总结病例特点及规律,为预防和减少儿童急性中毒提供科学依据。方法采用帕累托图(Pareto)法回顾性统计分析医院因急性中毒而收治住院的66例儿童病例资料,对患儿年龄分布、中毒季节、引起患儿中毒的品种分布、药品种类分布、剂型分布特点进行统计分析。结果儿童急性中毒年龄、季节、中毒品种、中毒药物剂型的主要因素有:1~3岁,第二、三季度,药品,片剂。中毒药品的主要因素为中枢神经系统用药、心血管系统用药、呼吸系统用药、影响变态反应药物。中毒药物例次最多的为氯硝西泮片。结论急性中毒以1~3岁儿童为主;主要发生在第二、三季度;以药品为主,剂型以片剂为主;国家有关部门应进一步完善相关立法、推广儿童药品安全包装、控制处方限量等源头控制;通过增强科普教育及监护人安全意识,进而有效降低儿童急性中毒的发生率。 展开更多
关键词 pareto 儿童 急性中毒 药学建议
下载PDF
基于Pareto-GA多目标的企业管理系统优化研究——以某造纸厂为例
14
作者 张治国 梁娜 《造纸科学与技术》 2024年第7期98-105,共8页
传统造纸厂管理优化通常只针对单一目标,忽略了质量和安全等重要方面。因此,提出了一种面向造纸厂的多个目标优化方法,并结合Pareto排序以及遗传算法搜索机制改进的Pareto-遗传算法作为求解方法,以实现对造纸厂监管系统的优化设计。研... 传统造纸厂管理优化通常只针对单一目标,忽略了质量和安全等重要方面。因此,提出了一种面向造纸厂的多个目标优化方法,并结合Pareto排序以及遗传算法搜索机制改进的Pareto-遗传算法作为求解方法,以实现对造纸厂监管系统的优化设计。研究结果显示,使用Schaffer's F6 Function进行测试时,改进的Pareto-遗传算法在72次迭代后达到最大适应度值0.93,优于其他两种算法。进一步将工期、成本、质量和安全多目标问题分解为两个子问题,成功获得3组Pareto最优解,为管理者提供不同需求下的优化方案。同时,提出的造纸厂管理系统优化设计方案能够提升造纸厂管理的效率和安全性,具有重要的理论价值和实际应用前景。 展开更多
关键词 造纸厂 管理优化 pareto排序 遗传算法
下载PDF
由Chvátal定理引出的关于Weibull分布和Pareto分布的研究 被引量:1
15
作者 李诚 胡泽春 周倩倩 《数学杂志》 2024年第3期195-202,共8页
受Chvátal定理的启发,本文研究了随机变量不超过其期望的概率的下确界问题.利用分析的方法,我们得到了当随机变量的分布为Weibull分布或Pareto分布时该随机变量不超过其期望的概率的下确界.
关键词 Chvátal定理 WEIBULL分布 pareto分布
下载PDF
基于Pareto控制的多目标PSO算法在铣削参数优化中的应用
16
作者 王奇 陈曦 +2 位作者 刘海妹 赵彻 徐波 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第1期237-247,共11页
工艺参数是影响零件加工质量和效率的关键因素,工艺参数的优化和调节是改善加工工艺的最有效方法。针对铣削加工参数优化问题,提出了一种基于应用实例的多目标切削参数优化方法。首先,以材料去除率、切削力和刀具寿命为目标函数,建立了... 工艺参数是影响零件加工质量和效率的关键因素,工艺参数的优化和调节是改善加工工艺的最有效方法。针对铣削加工参数优化问题,提出了一种基于应用实例的多目标切削参数优化方法。首先,以材料去除率、切削力和刀具寿命为目标函数,建立了统一的切削工艺参数多目标优化数学模型。随后,使用切削数据对目标函数进行组合,建立了该问题的数学模型,研究了适用的求解方法以获得最优解,并通过实验验证了参数优化的有效性。该方法可为加工参数的选择提供指导和依据。 展开更多
关键词 铣削 参数优化 刀具寿命 pareto控制的粒子群优化
下载PDF
极值服从广义Pareto分布的扭转载荷外推方法研究
17
作者 郑国峰 陈柏先 +2 位作者 隗寒冰 杨昊民 严璐瑶 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第2期198-207,共10页
提出了一种极值样本服从广义Pareto分布(generalized pareto distribution,GPD)函数的扭转载荷时域外推方法,基于极值样本的均值超出函数,首先确定一个区间范围,并以形状参数最小的均方误差为目标,通过自抽样法确定最佳阈值,再采用极大... 提出了一种极值样本服从广义Pareto分布(generalized pareto distribution,GPD)函数的扭转载荷时域外推方法,基于极值样本的均值超出函数,首先确定一个区间范围,并以形状参数最小的均方误差为目标,通过自抽样法确定最佳阈值,再采用极大似然估计法对GPD函数的形状参数和尺度参数进行估计,获取扭转随机载荷谱的极值样本,服从GPD分布规律。以商用车驾驶室的稳定杆为研究对象,介绍了扭转载荷采集的方法,基于所提出的扭转载荷时域外推方法进行外推研究,并分别从穿级计数、功率谱密度、雨流图和潜在伪损伤量等方面对外推前后的载荷谱进行了对比分析。结果表明:所构建的载荷外推算法对商用车驾驶室稳定杆扭转载荷外推有较好适应性。 展开更多
关键词 扭转随机载荷 时域外推 广义pareto分布 驾驶室稳定杆
下载PDF
给定边数的超仙人掌图的第二大Pareto H-特征值
18
作者 赵亚萍 朱忠熏 +1 位作者 郑李怡 谭连生 《中南民族大学学报(自然科学版)》 CAS 2024年第5期718-720,共3页
设λ_(2)(H)是超图H的第二大Pareto H-特征值,探讨了超仙人掌图的Pareto H-特征值,特别地,通过刻画超仙人掌的极值图,给出了超仙人掌图的第二大Pareto H-特征值的上界并刻画出了该上界所对应的极值超图.
关键词 pareto H-特征值 超仙人掌图 谱半径
下载PDF
求解多目标流水车间调度Pareto最优解的遗传强化算法
19
作者 刘宇 陈永灿 周艳平 《计算机系统应用》 2024年第2期239-245,共7页
针对多目标流水车间调度Pareto最优问题,本文建立了以最大完工时间和最大拖延时间为优化目标的多目标流水车间调度问题模型,并设计了一种基于Q-learning的遗传强化学习算法求解该问题的Pareto最优解.该算法引入状态变量和动作变量,通过Q... 针对多目标流水车间调度Pareto最优问题,本文建立了以最大完工时间和最大拖延时间为优化目标的多目标流水车间调度问题模型,并设计了一种基于Q-learning的遗传强化学习算法求解该问题的Pareto最优解.该算法引入状态变量和动作变量,通过Q-learning算法获得初始种群,以提高初始解质量.在算法进化过程中,利用Q表指导变异操作,扩大局部搜索范围.采用Pareto快速非支配排序以及拥挤度计算提高解的质量以及多样性,逐步获得Pareto最优解.通过与遗传算法、NSGA-II算法和Q-learning算法进行对比实验,验证了改进后的遗传强化算法在求解多目标流水车间调度问题Pareto最优解的有效性. 展开更多
关键词 多目标流水车间调度 Q-LEARNING 遗传算法 pareto
下载PDF
基于Pareto解集的工业园区微网优化配置研究 被引量:1
20
作者 方刚 王静 +1 位作者 张波波 王俊哲 《综合智慧能源》 2024年第1期49-55,共7页
工业园区各类能源耦合性较差,不同能源系统独立运行,能源利用率较低,需从多类能源互联集成和互补融合入手,提高能源的综合利用效率和可再生能源的利用率。提出了一种工业园区综合能源微网方案,以总成本、污染治理费、电网可靠性、风光... 工业园区各类能源耦合性较差,不同能源系统独立运行,能源利用率较低,需从多类能源互联集成和互补融合入手,提高能源的综合利用效率和可再生能源的利用率。提出了一种工业园区综合能源微网方案,以总成本、污染治理费、电网可靠性、风光互补性为目标函数和约束条件,建立了多能微电网优化模型。设计了一种基于Pareto最优解集的多目标差分算法并采用熵权法确定每个评价指标的权重,将多目标运算转化为单目标运算。仿真结果表明,该算法在微电网端可有效降低传统能源的消耗,加强清洁能源的有效利用,减少碳排放量并降低系统运行成本。 展开更多
关键词 工业园区 综合能源 能源微网 多能互补 优化配置 pareto最优 多目标差分 熵权法 碳排放 可再生能源
下载PDF
上一页 1 2 117 下一页 到第
使用帮助 返回顶部