期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling 被引量:1
1
作者 CuiyuWang Xinyu Li Yiping Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1849-1870,共22页
Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enabl... Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods. 展开更多
关键词 Multi-objective flexible job shop scheduling pareto archive set collaborative evolutionary crowd similarity
下载PDF
MULTI OBJECTIVE OPTIMIZATION USING GENETIC ALGORITHM WITH LOCAL SEARCH
2
作者 戴晓晖 李敏强 寇纪淞 《Transactions of Tianjin University》 EI CAS 1998年第2期31-35,共5页
In this paper,we propose a hybrid algorithm for finding a set of non dominated solutions of a multi objective optimization problem.In the proposed algorithm,a local search procedure is applied to each solution gener... In this paper,we propose a hybrid algorithm for finding a set of non dominated solutions of a multi objective optimization problem.In the proposed algorithm,a local search procedure is applied to each solution generated by genetic operations.The aim of the proposed algorithm is not to determine a single final solution but to try to find all the non dominated solutions of a multi objective optimization problem.The choice of the final solution is left to the decision makers preference.High search ability of the proposed algorithm is demonstrated by computer simulation. 展开更多
关键词 multi objective genetic algorithm pareto set local search
下载PDF
Improved Multi-objective Ant Colony Optimization Algorithm and Its Application in Complex Reasoning 被引量:3
3
作者 WANG Xinqing ZHAO Yang +2 位作者 WANG Dong ZHU Huijie ZHANG Qing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1031-1040,共10页
The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become... The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints.So far,little research has been carried out in this field.This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes.Three optimization objectives are considered simultaneously: maximum probability of average fault,maximum average importance,and minimum average complexity of test.Under the constraints of both known symptoms and the causal relationship among different components,a multi-objective optimization mathematical model is set up,taking minimizing cost of fault reasoning as the target function.Since the problem is non-deterministic polynomial-hard(NP-hard),a modified multi-objective ant colony algorithm is proposed,in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives.At last,a Pareto optimal set is acquired.Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set,through which the final fault causes can be identified according to decision-making demands,thus realize fault reasoning of the multi-constraint and multi-objective complex system.Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model,which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system. 展开更多
关键词 fault reasoning ant colony algorithm pareto set multi-objective optimization complex system
下载PDF
Synergetic Optimization of Missile Shapes for Aerodynamic and Radar Cross-Section Performance Based on Multi-objective Evolutionary Algorithm
4
作者 刘洪 《Journal of Shanghai Jiaotong university(Science)》 EI 2004年第2期36-40,共5页
A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set ... A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set using interactive preference articulation. There are two objective functions, to maximize ratio of lift to drag and to minimize radar cross-section (RCS) value. 3D computational electromagnetic solver was used to evaluate RCS, electromagnetic performance. 3D Navier-Stokes flow solver was adopted to evaluate aerodynamic performance. A flight mechanics solver was used to analyze the stability of the missile. Based on the MOEA, a synergetic optimization of missile shapes for aerodynamic and radar cross-section performance is completed. The results show that the proposed approach can be used in more complex optimization case of flight vehicles. 展开更多
关键词 multi-objective design(MOD) multidisciplinary design optimization (MDO) evolutionary algorithm synergetic optimization decision making scheme interactive preference articulation pareto optimal set
下载PDF
Satellite constellation design with genetic algorithms based on system performance
5
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) pareto optimal set satellite constellation design surveillance performance
下载PDF
Genetic Algorithms Development for MultiobjectiveDesign Optimization of Compressor Cascade 被引量:1
6
作者 Jun LI(Venture Laboratory, Graduate School, Kyoto institute of Technology, Matsugasaki, Sakyo-ku, Kyoto606-8585, Japan)Koji Morinishi Nobuyuki Satofuka(Department of Mechanical and System Engineering, Kyoto Institute of Technology, Matsugasaki,Sakyo-ku, 《Journal of Thermal Science》 SCIE EI CAS CSCD 1999年第3期158-165,共8页
Aerodynamic optimization design of compressor blade shape is a design challenge at present because itis inherently a multiobjective problem. Thus, multiobjective Genetic Algorithms based on the multibranch simulated a... Aerodynamic optimization design of compressor blade shape is a design challenge at present because itis inherently a multiobjective problem. Thus, multiobjective Genetic Algorithms based on the multibranch simulated annealing selection and collection of Pareto solutions strategy have been developedand applied to the optimum design of compressor cascade. The present multiobjective design seeks highpressure rise, high flow turning angle and low total pressure loss at a low inlet Mach number. Paretosolutions obtain the better aerodynamic performance of the cascade than the existing Control DiffusionAirfoil. From the Pareto solutions, the decision maker would be able to find a design that satisfies hisdesign goal best. The results indicate that the feasibility of multiobjective Genetic Algorithms as amultiple objectives optimization tool in the engineering field. 展开更多
关键词 multiobjective optimization genetic algorithms pareto optimal set compressor cascade design.
原文传递
On the Tractability of Shortest Path Problems in Weighted Edge-Coloured Graphs
7
作者 ENSOR Andrew LILLO Felipe 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2018年第2期527-538,共12页
A weighted edge-coloured graph is a graph for which each edge is assigned both a positive weight and a discrete colour, and can be used to model transportation and computer networks in which there are multiple transpo... A weighted edge-coloured graph is a graph for which each edge is assigned both a positive weight and a discrete colour, and can be used to model transportation and computer networks in which there are multiple transportation modes. In such a graph paths are compared by their total weight in each colour, resulting in a Pareto set of minimal paths from one vertex to another. This paper will give a tight upper bound on the cardinality of a minimal set of paths for any weighted edge-coloured graph. Additionally, a bound is presented on the expected number of minimal paths in weighted edge-bicoloured graphs. These bounds indicate that despite weighted edge-coloured graphs are theoretically intractable, amenability to computation is typically found in practice. 展开更多
关键词 Edge-coloured chain graph minimal paths multimodal networks pareto set cardinality upper bounds.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部