Mobile edge computing is trending nowadays for its computation efficiency and privacy.The rapid development of e-commerce show great interest in mobile edge computing due to numerous rise of small and middle-sized ent...Mobile edge computing is trending nowadays for its computation efficiency and privacy.The rapid development of e-commerce show great interest in mobile edge computing due to numerous rise of small and middle-sized enterprises(SMEs)in the internet.This paper predicts the overall sales volume of the enterprise through the classic ARIMA model,and notes that the behavior and arrival differences between the new and old customer groups will affect the accuracy of our forecasts,so we then use Pareto/NBD to explore the repeated purchases of customers at the individual level of the old customer and the SVR model to predict the arrival of new customers,thus helping the enterprise to make layered and accurate marketing of new and old customers through machine learning.In general,machine learning relies on powerful computation and storage resources,while mobile edge computing typically provides limited computation resources locally.Therefore,it is essential to combine machine learning with mobile edge computing to further promote the proliferation of data analysis among SMEs.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.71402097),“Research on the impact of board heterogeneity on the results of reverse cross-border M&A–Based on big data analysis technology”of the 4th tutor academic leadership program of Shanghai International Studies University.
文摘Mobile edge computing is trending nowadays for its computation efficiency and privacy.The rapid development of e-commerce show great interest in mobile edge computing due to numerous rise of small and middle-sized enterprises(SMEs)in the internet.This paper predicts the overall sales volume of the enterprise through the classic ARIMA model,and notes that the behavior and arrival differences between the new and old customer groups will affect the accuracy of our forecasts,so we then use Pareto/NBD to explore the repeated purchases of customers at the individual level of the old customer and the SVR model to predict the arrival of new customers,thus helping the enterprise to make layered and accurate marketing of new and old customers through machine learning.In general,machine learning relies on powerful computation and storage resources,while mobile edge computing typically provides limited computation resources locally.Therefore,it is essential to combine machine learning with mobile edge computing to further promote the proliferation of data analysis among SMEs.