Over the years, a number of methods have been proposed for the generation of uniform and globally optimal Pareto frontiers in multi-objective optimization problems. This has been the case irrespective of the problem d...Over the years, a number of methods have been proposed for the generation of uniform and globally optimal Pareto frontiers in multi-objective optimization problems. This has been the case irrespective of the problem definition. The most commonly applied methods are the normal constraint method and the normal boundary intersection method. The former suffers from the deficiency of an uneven Pareto set distribution in the case of vertical (or horizontal) sections in the Pareto frontier, whereas the latter suffers from a sparsely populated Pareto frontier when the optimization problem is numerically demanding (ill-conditioned). The method proposed in this paper, coupled with a simple Pareto filter, addresses these two deficiencies to generate a uniform, globally optimal, well-populated Pareto frontier for any feasible bi-objective optimization problem. A number of examples are provided to demonstrate the performance of the algorithm.展开更多
Based on the theory of fuzzy decision making, a two phrase approach is proposed for the decentralized bi level linear programming problem(DBLPP). The approach considers the conflicts between the upper and lower leve...Based on the theory of fuzzy decision making, a two phrase approach is proposed for the decentralized bi level linear programming problem(DBLPP). The approach considers the conflicts between the upper and lower levels decision makers (DMs), and among the lower level DMs themselves, a satisfactory solution is got with the non conflict matrix and decision power distribution. Compared with the other methods that have ever been proposed, the solution process is more fit to a kind of real decision making processes.展开更多
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ...A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production.展开更多
To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainabili...To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainability was analyzed, and the layout problem for maintainability was presented. It was formulated as an optimization problem, where maintainability, layout space and distance requirement were formulated as objective functions. A multi-objective particle swarm optimization algorithm, in which the constrained-domination relationship and the update strategy of the global best were simply modified, was then used to obtain Pareto optimal solutions for the maintainability layout design problem. Finally, application in oxygen generation system of a spacecraft was studied in detail to illustrate the effectiveness and usefulness of the proposed method. The results show that the concurrent maintainability design can be carried out during the layout design process by solving the layout optimization problem for maintainability.展开更多
A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which m...A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.展开更多
This paper proposes a parameter determination method of distribution voltage regulators load ratio control transformers (LRT) and step voltage regulators (SVR) considering the tap change and voltage profile. The m...This paper proposes a parameter determination method of distribution voltage regulators load ratio control transformers (LRT) and step voltage regulators (SVR) considering the tap change and voltage profile. The method takes two procedures in order to simplify the optimization problem and to reduce calculation time. One is to simultaneously determine the control parameters of LRT and SVR minimizing voltage violations and voltage variations. The algorithm is based on particle swarm optimization (PSO), which is one of non-linear optimization methods by using a concept of swarm intelligence. Another is to determine the dead-band width of LRT and SVR on the basis of bi-evaluation of tap change and voltage margin. The concept of a Pareto optimal solution is used for the decision of the best dead-band width. As the results of numerical simulations using distribution network model, the validity of the proposed method has been affirmed.展开更多
The optimal rendezvous trajectory designs in many current research efforts do not incorporate the practical uncertainties into the closed loop of the design.A robust optimization design method for a nonlinear rendezvo...The optimal rendezvous trajectory designs in many current research efforts do not incorporate the practical uncertainties into the closed loop of the design.A robust optimization design method for a nonlinear rendezvous trajectory with uncertainty is proposed in this paper.One performance index related to the variances of the terminal state error is termed the robustness performance index,and a two-objective optimization model(including the minimum characteristic velocity and the minimum robustness performance index)is formulated on the basis of the Lambert algorithm.A multi-objective,non-dominated sorting genetic algorithm is employed to obtain the Pareto optimal solution set.It is shown that the proposed approach can be used to quickly obtain several inherent principles of the rendezvous trajectory by taking practical errors into account.Furthermore,this approach can identify the most preferable design space in which a specific solution for the actual application of the rendezvous control should be chosen.展开更多
In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (S...In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively.展开更多
We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy mo...We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy modules for umbilical installation while maintaining structural safety. The approximation model is constructed by the design of experiment (DOE) sampling and is utilized to solve the problem of time-consuming analyses. The non-linear dynamic analyses considering environmental loadings are executed on these sample points from DOE. Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to obtain the Pareto solution set through an evolutionary optimization process. Intuitionist fuzzy set theory is applied for selecting the best compromise solution from Pareto set. The optimization results indicate this optimization strategy with approximation model and multiple attribute decision-making method is valid, and provide the optimal deployment method for deepwater dynamic umbilical buoyancy modules.展开更多
文摘Over the years, a number of methods have been proposed for the generation of uniform and globally optimal Pareto frontiers in multi-objective optimization problems. This has been the case irrespective of the problem definition. The most commonly applied methods are the normal constraint method and the normal boundary intersection method. The former suffers from the deficiency of an uneven Pareto set distribution in the case of vertical (or horizontal) sections in the Pareto frontier, whereas the latter suffers from a sparsely populated Pareto frontier when the optimization problem is numerically demanding (ill-conditioned). The method proposed in this paper, coupled with a simple Pareto filter, addresses these two deficiencies to generate a uniform, globally optimal, well-populated Pareto frontier for any feasible bi-objective optimization problem. A number of examples are provided to demonstrate the performance of the algorithm.
文摘Based on the theory of fuzzy decision making, a two phrase approach is proposed for the decentralized bi level linear programming problem(DBLPP). The approach considers the conflicts between the upper and lower levels decision makers (DMs), and among the lower level DMs themselves, a satisfactory solution is got with the non conflict matrix and decision power distribution. Compared with the other methods that have ever been proposed, the solution process is more fit to a kind of real decision making processes.
基金Projects(50974039,50634030)supported by the National Natural Science Foundation of China
文摘A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production.
基金Project(51005238)supported by the National Natural Science Foundation of China
文摘To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainability was analyzed, and the layout problem for maintainability was presented. It was formulated as an optimization problem, where maintainability, layout space and distance requirement were formulated as objective functions. A multi-objective particle swarm optimization algorithm, in which the constrained-domination relationship and the update strategy of the global best were simply modified, was then used to obtain Pareto optimal solutions for the maintainability layout design problem. Finally, application in oxygen generation system of a spacecraft was studied in detail to illustrate the effectiveness and usefulness of the proposed method. The results show that the concurrent maintainability design can be carried out during the layout design process by solving the layout optimization problem for maintainability.
基金Project(2009AA04Z216) supported in part by the National High Technology Research and Development Program of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Program of ChinaProject(20092302120068) supported by the Doctoral Program of Higher Education of China
文摘A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.
文摘This paper proposes a parameter determination method of distribution voltage regulators load ratio control transformers (LRT) and step voltage regulators (SVR) considering the tap change and voltage profile. The method takes two procedures in order to simplify the optimization problem and to reduce calculation time. One is to simultaneously determine the control parameters of LRT and SVR minimizing voltage violations and voltage variations. The algorithm is based on particle swarm optimization (PSO), which is one of non-linear optimization methods by using a concept of swarm intelligence. Another is to determine the dead-band width of LRT and SVR on the basis of bi-evaluation of tap change and voltage margin. The concept of a Pareto optimal solution is used for the decision of the best dead-band width. As the results of numerical simulations using distribution network model, the validity of the proposed method has been affirmed.
基金supported by the National Natural Science Foundation of China(Grant No.11222215)the National Basic Research Program of China(Grant No.2013CB733100)the Science Project of the National University of Defense Technology(Grant No.CJ12-01-02)
文摘The optimal rendezvous trajectory designs in many current research efforts do not incorporate the practical uncertainties into the closed loop of the design.A robust optimization design method for a nonlinear rendezvous trajectory with uncertainty is proposed in this paper.One performance index related to the variances of the terminal state error is termed the robustness performance index,and a two-objective optimization model(including the minimum characteristic velocity and the minimum robustness performance index)is formulated on the basis of the Lambert algorithm.A multi-objective,non-dominated sorting genetic algorithm is employed to obtain the Pareto optimal solution set.It is shown that the proposed approach can be used to quickly obtain several inherent principles of the rendezvous trajectory by taking practical errors into account.Furthermore,this approach can identify the most preferable design space in which a specific solution for the actual application of the rendezvous control should be chosen.
文摘In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50739004 and 51009093)
文摘We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy modules for umbilical installation while maintaining structural safety. The approximation model is constructed by the design of experiment (DOE) sampling and is utilized to solve the problem of time-consuming analyses. The non-linear dynamic analyses considering environmental loadings are executed on these sample points from DOE. Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to obtain the Pareto solution set through an evolutionary optimization process. Intuitionist fuzzy set theory is applied for selecting the best compromise solution from Pareto set. The optimization results indicate this optimization strategy with approximation model and multiple attribute decision-making method is valid, and provide the optimal deployment method for deepwater dynamic umbilical buoyancy modules.