The experimental analysis presented aims at the selection of the most optimal machining parameter combination for wire electrical discharge machining (WEDM) of 5083 aluminum alloy. Based on the Taguchi experimental ...The experimental analysis presented aims at the selection of the most optimal machining parameter combination for wire electrical discharge machining (WEDM) of 5083 aluminum alloy. Based on the Taguchi experimental design (L9 orthogonal array) method, a series of experiments were performed by considering pulse-on time, pulse-off time, peak current and wire tension as input parameters. The surface roughness and cutting speed were considered responses. Based on the signal-to-noise (S/N) ratio, the influence of the input parameters on the responses was determined. The optimal machining parameters setting for the maximum cutting speed and minimum surface roughness were found using Taguchi methodology. Then, additive model was employed for prediction of all (34) possible machining combinations. Finally, a handy technology table has been reported using Pareto optimality approach.展开更多
This paper proposes a parameter determination method of distribution voltage regulators load ratio control transformers (LRT) and step voltage regulators (SVR) considering the tap change and voltage profile. The m...This paper proposes a parameter determination method of distribution voltage regulators load ratio control transformers (LRT) and step voltage regulators (SVR) considering the tap change and voltage profile. The method takes two procedures in order to simplify the optimization problem and to reduce calculation time. One is to simultaneously determine the control parameters of LRT and SVR minimizing voltage violations and voltage variations. The algorithm is based on particle swarm optimization (PSO), which is one of non-linear optimization methods by using a concept of swarm intelligence. Another is to determine the dead-band width of LRT and SVR on the basis of bi-evaluation of tap change and voltage margin. The concept of a Pareto optimal solution is used for the decision of the best dead-band width. As the results of numerical simulations using distribution network model, the validity of the proposed method has been affirmed.展开更多
A novel approach,which can be used for dynamic characteristics analysis of machine tools based on unit structure(US),is reported in this paper.The concepts of unit structures for design of machine tools are defined.In...A novel approach,which can be used for dynamic characteristics analysis of machine tools based on unit structure(US),is reported in this paper.The concepts of unit structures for design of machine tools are defined.In order to satisfy the dynamic characteristics requirement of high natural frequency and light-weight of US,a design method of multi-disciplinary optimization of NSGA-II about unit structures driven by natural frequency and mass is developed.Through analyzing the unit structures,key factors affecting the natural frequency and mass are extracted,and the mathematical models of natural frequency and mass about unit structures are also established by using central composite design and response surface model.The goal of high natural frequency and light-weight is reached by using the multi-objective genetic algorithms.The Pareto optimal set is also obtained.The dynamic behavior of US is investigated by the experimental modal analysis.To show the efficiency of the proposed novel method,the example of YKW51250 gear shaping machine bed is used.Through optimization of NSGA-II about US of YKW51250 machine bed,the natural frequency of YKW51250 gear shaping machine bed is increased by 30.4%and its mass decreased by 5.2%comparing with the original design.By studying the dynamic characteristics of the simplified machine tools bed,useful laws are obtained,and these laws can be used in primary design of NC machine tools structures.The optimal method based on US can be also applied to the dynamic optimal design of machine tools and other similar equipments.展开更多
We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy mo...We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy modules for umbilical installation while maintaining structural safety. The approximation model is constructed by the design of experiment (DOE) sampling and is utilized to solve the problem of time-consuming analyses. The non-linear dynamic analyses considering environmental loadings are executed on these sample points from DOE. Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to obtain the Pareto solution set through an evolutionary optimization process. Intuitionist fuzzy set theory is applied for selecting the best compromise solution from Pareto set. The optimization results indicate this optimization strategy with approximation model and multiple attribute decision-making method is valid, and provide the optimal deployment method for deepwater dynamic umbilical buoyancy modules.展开更多
The optimal rendezvous trajectory designs in many current research efforts do not incorporate the practical uncertainties into the closed loop of the design.A robust optimization design method for a nonlinear rendezvo...The optimal rendezvous trajectory designs in many current research efforts do not incorporate the practical uncertainties into the closed loop of the design.A robust optimization design method for a nonlinear rendezvous trajectory with uncertainty is proposed in this paper.One performance index related to the variances of the terminal state error is termed the robustness performance index,and a two-objective optimization model(including the minimum characteristic velocity and the minimum robustness performance index)is formulated on the basis of the Lambert algorithm.A multi-objective,non-dominated sorting genetic algorithm is employed to obtain the Pareto optimal solution set.It is shown that the proposed approach can be used to quickly obtain several inherent principles of the rendezvous trajectory by taking practical errors into account.Furthermore,this approach can identify the most preferable design space in which a specific solution for the actual application of the rendezvous control should be chosen.展开更多
文摘The experimental analysis presented aims at the selection of the most optimal machining parameter combination for wire electrical discharge machining (WEDM) of 5083 aluminum alloy. Based on the Taguchi experimental design (L9 orthogonal array) method, a series of experiments were performed by considering pulse-on time, pulse-off time, peak current and wire tension as input parameters. The surface roughness and cutting speed were considered responses. Based on the signal-to-noise (S/N) ratio, the influence of the input parameters on the responses was determined. The optimal machining parameters setting for the maximum cutting speed and minimum surface roughness were found using Taguchi methodology. Then, additive model was employed for prediction of all (34) possible machining combinations. Finally, a handy technology table has been reported using Pareto optimality approach.
文摘This paper proposes a parameter determination method of distribution voltage regulators load ratio control transformers (LRT) and step voltage regulators (SVR) considering the tap change and voltage profile. The method takes two procedures in order to simplify the optimization problem and to reduce calculation time. One is to simultaneously determine the control parameters of LRT and SVR minimizing voltage violations and voltage variations. The algorithm is based on particle swarm optimization (PSO), which is one of non-linear optimization methods by using a concept of swarm intelligence. Another is to determine the dead-band width of LRT and SVR on the basis of bi-evaluation of tap change and voltage margin. The concept of a Pareto optimal solution is used for the decision of the best dead-band width. As the results of numerical simulations using distribution network model, the validity of the proposed method has been affirmed.
基金partially supported by the Leading Talent Project of Guangdong Province of Chinathe National Key S&T Special Projects of China on CNC machine tools and fundamental manufacturing equipments(Grant No.2010ZX04001-191 and 2011ZX04002-032)
文摘A novel approach,which can be used for dynamic characteristics analysis of machine tools based on unit structure(US),is reported in this paper.The concepts of unit structures for design of machine tools are defined.In order to satisfy the dynamic characteristics requirement of high natural frequency and light-weight of US,a design method of multi-disciplinary optimization of NSGA-II about unit structures driven by natural frequency and mass is developed.Through analyzing the unit structures,key factors affecting the natural frequency and mass are extracted,and the mathematical models of natural frequency and mass about unit structures are also established by using central composite design and response surface model.The goal of high natural frequency and light-weight is reached by using the multi-objective genetic algorithms.The Pareto optimal set is also obtained.The dynamic behavior of US is investigated by the experimental modal analysis.To show the efficiency of the proposed novel method,the example of YKW51250 gear shaping machine bed is used.Through optimization of NSGA-II about US of YKW51250 machine bed,the natural frequency of YKW51250 gear shaping machine bed is increased by 30.4%and its mass decreased by 5.2%comparing with the original design.By studying the dynamic characteristics of the simplified machine tools bed,useful laws are obtained,and these laws can be used in primary design of NC machine tools structures.The optimal method based on US can be also applied to the dynamic optimal design of machine tools and other similar equipments.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50739004 and 51009093)
文摘We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy modules for umbilical installation while maintaining structural safety. The approximation model is constructed by the design of experiment (DOE) sampling and is utilized to solve the problem of time-consuming analyses. The non-linear dynamic analyses considering environmental loadings are executed on these sample points from DOE. Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to obtain the Pareto solution set through an evolutionary optimization process. Intuitionist fuzzy set theory is applied for selecting the best compromise solution from Pareto set. The optimization results indicate this optimization strategy with approximation model and multiple attribute decision-making method is valid, and provide the optimal deployment method for deepwater dynamic umbilical buoyancy modules.
基金supported by the National Natural Science Foundation of China(Grant No.11222215)the National Basic Research Program of China(Grant No.2013CB733100)the Science Project of the National University of Defense Technology(Grant No.CJ12-01-02)
文摘The optimal rendezvous trajectory designs in many current research efforts do not incorporate the practical uncertainties into the closed loop of the design.A robust optimization design method for a nonlinear rendezvous trajectory with uncertainty is proposed in this paper.One performance index related to the variances of the terminal state error is termed the robustness performance index,and a two-objective optimization model(including the minimum characteristic velocity and the minimum robustness performance index)is formulated on the basis of the Lambert algorithm.A multi-objective,non-dominated sorting genetic algorithm is employed to obtain the Pareto optimal solution set.It is shown that the proposed approach can be used to quickly obtain several inherent principles of the rendezvous trajectory by taking practical errors into account.Furthermore,this approach can identify the most preferable design space in which a specific solution for the actual application of the rendezvous control should be chosen.