A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetr...A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.展开更多
We theoretically study the propagation dynamics of input light in one-dimensional mixed linear-nonlinear photonic lattices with a complex parity-time symmetric potential. Numerical computation shows simultaneous local...We theoretically study the propagation dynamics of input light in one-dimensional mixed linear-nonlinear photonic lattices with a complex parity-time symmetric potential. Numerical computation shows simultaneous localization and steering of the optical beam due to the asymmetric scatter and interplay between Kerr-type nonlinearity and PT symmetry. This may provide a feasible measure for manipulation light in optical communications, integrated optics and so on.展开更多
Since the first observation of parity-time(PT) symmetry in optics, varied interesting phenomena have been discovered in both theories and experiments, such as PT phase transition and unidirectional invisibility, whi...Since the first observation of parity-time(PT) symmetry in optics, varied interesting phenomena have been discovered in both theories and experiments, such as PT phase transition and unidirectional invisibility, which turns PT-symmetric optics into a hotspot in research. Here, we report on the one-way localized Fabry-Pérot(FP) resonance, where a welldesigned PT optical resonator may operate at exceptional points with bidirectional transparency but unidirectional field localization. Overtones of such one-way localized FP resonance can be classified into a blue shifted branch and a red shifted branch. Therefore, the fundamental resonant frequency is not the lowest one. We find that the spatial field distributions of the overtones at the same absolute order are almost the same, even though their frequencies are quite different.展开更多
Researches on parity-time(PT)symmetry in acoustic field can provide an efficient platform for controlling the travelling acoustic waves with balanced loss and gain.Here,we report a feasible design of PT-symmetric syst...Researches on parity-time(PT)symmetry in acoustic field can provide an efficient platform for controlling the travelling acoustic waves with balanced loss and gain.Here,we report a feasible design of PT-symmetric system constructed by piezoelectric composite plates with two different active external circuits.By judiciously adjusting the resistances and inductances in the external circuits,we obtain the exceptional point due to the spontaneous breaking of PT symmetry at the desired frequencies and can observe the unidirectional invisibility.Moreover,the system can be at PT exact phase or broken phase at the same frequency in the same structure by merely adjusting the external circuits,which represents the active control that makes the acoustic manipulation more convenient.Our study may provide a feasible way for manipulating acoustic waves and inspire the application of piezoelectric composite materials in acoustic structures.展开更多
In this paper, the (l+l)-dimensional variable-coefficient complex Ginzburg-Landau (CGL) equation with a parity- time (PT) symmetric potential U(x) is investigated. Although the CGL equations with a PT-symmetr...In this paper, the (l+l)-dimensional variable-coefficient complex Ginzburg-Landau (CGL) equation with a parity- time (PT) symmetric potential U(x) is investigated. Although the CGL equations with a PT-symmetric potential are less reported analytically, the analytic solutions for the CGL equation are obtained with the bilinear method in this paper. Via the derived solutions, some soliton structures are presented with corresponding parameters, and the influences of them are analyzed and studied. The single-soliton structure is numerically verified, and its stability is analyzed against additive and multiplicative noises. In particular, we study the soliton dynamics under the impact of the PT-symmetric potential. Results show that the PT-symmetric potential plays an important role for obtaining soliton structures in ultrafast optics, and we can design fiber lasers and all-optical switches depending on the different amplitudes of soliton-like structures.展开更多
We experimentally investigate the impact of static disorder and dynamic disorder on the non-unitary dynamics of parity-time(PT)-symmetric quantum walks.Via temporally alternating photon losses in an interferometric ne...We experimentally investigate the impact of static disorder and dynamic disorder on the non-unitary dynamics of parity-time(PT)-symmetric quantum walks.Via temporally alternating photon losses in an interferometric network,we realize the passive PT-symmetric quantum dynamics for single photons.Controllable coin operations allow us to simulate different environmental influences,which result in three different behaviors of quantum walkers:a standard ballistic spread,a diffusive behavior,and a localization,respectively,in a PT-symmetric quantum walk architecture.展开更多
The existence and stability of defect solitons supported by parity-time (PT) symmetric defects in superlattices are investigated. In the semi-infinite gap, in-phase solitons are found to exist stably for positive de...The existence and stability of defect solitons supported by parity-time (PT) symmetric defects in superlattices are investigated. In the semi-infinite gap, in-phase solitons are found to exist stably for positive defects, zero defects, and negative defects. In the first gap, out-of-phase solitons are stable for positive defects or zero defects, whereas in-phase solitons are stable for negative defects. For both the in-phase and out-of-phase solitons with the positive defect and in-phase solitons with negative defect in the first gap, there exists a cutoff point of the propagation constant below which the defect solitons vanish. The value of the cutoff point depends on the depth of defect and the imaginary parts of the PT symmetric defect potentials. The influence of the imaginary part of the PT symmetric defect potentials on soliton stability is revealed.展开更多
A model of the photonic spin Hall effect(PSHE)in antisymmetric parity-time(APT)metamaterials with incidence of Gaussian beams is proposed here.We derive the displacement expression of the PSHE in APT metamaterials bas...A model of the photonic spin Hall effect(PSHE)in antisymmetric parity-time(APT)metamaterials with incidence of Gaussian beams is proposed here.We derive the displacement expression of the PSHE in APT metamaterials based on the transport properties of Gaussian beams in positive and negative refractive index materials.Furthermore,detailed discussions are provided on the APT scattering matrix,eigenstate ratio,and response near exceptional points in the case of loss or gain.In contrast to the unidirectional non-reflection in parity-time(PT)symmetric systems,the transverse shift that arises from both sides of the APT structure is consistent.By effectively adjusting the parameters of APT materials,we achieve giant displacements of the transverse shift.Finally,we present a multi-layer APT structure consisting of alternating left-handed and right-handed materials.By increasing the number of layers,Bragg oscillations can be generated,leading to an increase in resonant peaks in transverse shift.This study presents a new approach to achieving giant transverse shifts in the APT structure.This lays a theoretical foundation for the fabrication of related nano-optical devices.展开更多
The non-Hermitian PT-symmetric system can live in either unbroken or broken PT-symmetric phase. The separation point of the unbroken and broken PT-symmetric phases is called the PT-phase-transition point.Conventionall...The non-Hermitian PT-symmetric system can live in either unbroken or broken PT-symmetric phase. The separation point of the unbroken and broken PT-symmetric phases is called the PT-phase-transition point.Conventionally, given an arbitrary non-Hermitian PT-symmetric Hamiltonian, one has to solve the corresponding Schrodinger equation explicitly in order to determine which phase it is actually in. Here, we propose to use artificial neural network(ANN) to determine the PT-phase-transition points for non-Hermitian PT-symmetric systems with short-range potentials. The numerical results given by ANN agree well with the literature, which shows the reliability of our new method.展开更多
The existence and stability of multipeaked solitons are investigated in a parity-time symmetric superlattice with dual periods under both self-focusing and self-defocusing nonlinearity. For self-defocusing nonlinearit...The existence and stability of multipeaked solitons are investigated in a parity-time symmetric superlattice with dual periods under both self-focusing and self-defocusing nonlinearity. For self-defocusing nonlinearity, dipole solitons with low power and all the odd-peak solitons can exist stably in the first gap, while dipole solitons with high power and even-peak (except two) solitons are unstable. For self-focusing nonlinearity, even-peak out-of-phase solitons can propagate stably in the infinite gap, while odd-peak in-phase solitons are unstable.展开更多
The characteristics of the wireless power transfer(WPT)system vary under different transfer distances.As distance increases,efficiency drops off sharply,limiting the wider use of WPT technology.In order to mitigate th...The characteristics of the wireless power transfer(WPT)system vary under different transfer distances.As distance increases,efficiency drops off sharply,limiting the wider use of WPT technology.In order to mitigate this problem,this paper proposes a novel dual-coupled WPT system,where both electric-coupled mechanism and magnetic-coupled mechanism are utilized to enhance the transfer efficiency.Furthermore,a Parity-Time(PT)-symmetric circuit is utilized to realize robustness of the system.The coupled-mode model of the system is established and the expressions of operating frequency,transfer efficiency and output power are deduced.Analysis results indicate that in the unbroken PT-symmetric state,compared with single-coupled systems,the proposed system can keep constant performance within a longer distance;in broken PT-symmetric state,the proposed system has higher transfer efficiency.Simulated results and comparative results are in accordance with the theoretical analysis.Within 1.4m,this scheme can transfer power with constant efficiency of 77%and constant output power of 70W.展开更多
We show that inhomogeneous waveguides of slowly varied parity-time(PT) symmetry support localized optical resonances.The resonance is closely related to the formation of exceptional points separating exact and broken ...We show that inhomogeneous waveguides of slowly varied parity-time(PT) symmetry support localized optical resonances.The resonance is closely related to the formation of exceptional points separating exact and broken PT phases.Salient features of this kind of non-Hermitian resonance, including the formation of half-vortex flux and the discrete nature,are discussed.This investigation highlights the unprecedented uniqueness of field dynamics in non-Hermitian systems with many potential adaptive applications.展开更多
In order to realize the ultrastrong absorption of graphene with electrical modulation properties, we designed a composite structure of graphene and parity-time(PT) symmetry photonic crystal, which is achieved by placi...In order to realize the ultrastrong absorption of graphene with electrical modulation properties, we designed a composite structure of graphene and parity-time(PT) symmetry photonic crystal, which is achieved by placing the graphene layer on the top layer of the PT symmetry photonic crystal. In this paper, the absorption properties of graphene and the electrical modulating properties of the structure were theoretically analyzed based on the transfer matrix method. The result shows that the proposed structure can achieve the absorption of 31.5 d B for the communication wavelength of 1550 nm;meanwhile,by setting the electric field intensity to ±0.02 V/nm, the absorption of graphene can be largely modulated to realize an electrically switchable effect, the modulation depth of graphene absorption can reach nearly 100%, and the operation speed is also close to 8.171 GHz. This investigation provides a novel approach to design graphene-based optoelectronic devices and optical communication devices.展开更多
We present exact analytical solutions to parity-time(P T) symmetric optical system describing light transport in P T-symmetric optical couplers. We show that light intensity oscillates periodically between two wavegui...We present exact analytical solutions to parity-time(P T) symmetric optical system describing light transport in P T-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken P T-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken P T-symmetric phase. These analytical results agree with the recent experimental observation reported by Ru¨ter et al. [Nat. Phys.6(2010) 192]. Besides, we present a scheme for manipulating P T symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated P T-symmetric system by tuning the modulation amplitude and frequency.展开更多
We theoretically investigate the optical second-order sideband generation(OSSG)in an optical parity-time(PT)symmetric system,which consists of a passive cavity trapping the atomic ensemble and an active cavity.Compare...We theoretically investigate the optical second-order sideband generation(OSSG)in an optical parity-time(PT)symmetric system,which consists of a passive cavity trapping the atomic ensemble and an active cavity.Compared with the double-passive system,it is found that near the exceptional point(EP),the efficiency of the OSSG increases sharply not only for the blue probepump detuning resonant case but also for the red one.Using experimentally achievable parameters,we study the effect of the atomic ensemble on the efficiency of the OSSG in the PT-symmetric system.The numerical results show that the efficiency of the OSSG is 30%higher than that of the first-order sideband,which is realized easily by simultaneously modulating the atom-cavity coupling strength and detuning.Moreover,the efficiency of the OSSG can also be tuned effectively by the pump power,and the efficiency is robust when the pump power is strong enough.This study may have some guidance for modulating the nonlinear optical properties and controlling light propagation,which may stimulate further applications in optical communications.展开更多
We experimentally simulate a parity-time(PT)-symmetric quantum dynamics in a non-Hermitian system using a single-photon interferometer.We measure quantum final state using quantum state tomography.We observe the quant...We experimentally simulate a parity-time(PT)-symmetric quantum dynamics in a non-Hermitian system using a single-photon interferometer.We measure quantum final state using quantum state tomography.We observe the quantum state evolutions ranging from regions of unbroken to broken PT-symmetry using the single-photon interferometer.We experimentally prove that the eigenvalue of energy changes from real to imaginary corresponding to the non-Hermitian system from the PT-symmetry unbroken region to the PT-symmetry broken region.To the best of our knowledge,this is the first work to intuitively show the exceptional points of PT-symmetry non-unitary quantum dynamics in a single-photon interferometer from the energy perspective.展开更多
The study of non-Hermitian systems with parity-time(PT)symmetry is a rapidly developing frontier in recent years?Experimentally,PT-symmetric systems have been realized in classical optics by balancing gain and loss,wh...The study of non-Hermitian systems with parity-time(PT)symmetry is a rapidly developing frontier in recent years?Experimentally,PT-symmetric systems have been realized in classical optics by balancing gain and loss,which holds great promise for novel optical devices and networks?Here we report experimental realization of passive PT-symmetric quantum dynamics for single photons by temporally alternating photon losses in the quantum walk(QW)interferometers.The ability to impose PT symmetry allows us to realize and investigate Floquet topological phases driven by PT-symmetric QWs.We observe topological edge states between regions with different topological invariants?Topological invariants can be defined by winding numbers,Zak phases,general geometry phases and can be calculated?Can they be detected directly?We give an answer by reporting the experimental detection of bulk topological invariants in non-unitary QWs?The topological invariant of the non-unitary quantum walk is manifested in the quantized average displacement of the walker,which is probed by monitoring the photon loss.Furthermore,we report the experimental study of dynamic quantum phase transitions(DQPTs)and photonic skyrmions using discrete-time QWs?We simulate quench dynamics between distinct Floquet topological phases using quantum-walk dynamics,and experimentally characterize DQPTs and emergent skyrmion structures.Our results pave the way for realizing quantum mechanical PT-synthetic devices and augurs exciting possibilities for exploring topological properties of non-Hermitian systems using discretetime QWs.展开更多
文摘A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFA0303700the National Young 1000 Talent Planthe National Natural Science Foundation of China under Grants Nos 91321312,11621091,11674169and 11474050
文摘We theoretically study the propagation dynamics of input light in one-dimensional mixed linear-nonlinear photonic lattices with a complex parity-time symmetric potential. Numerical computation shows simultaneous localization and steering of the optical beam due to the asymmetric scatter and interplay between Kerr-type nonlinearity and PT symmetry. This may provide a feasible measure for manipulation light in optical communications, integrated optics and so on.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674119,11404125,and 11574389)the financial support from the Bird Nest Plan of HUST,Chinasupported by One Hundred-Talent Plan of Chinese Academy of Sciences
文摘Since the first observation of parity-time(PT) symmetry in optics, varied interesting phenomena have been discovered in both theories and experiments, such as PT phase transition and unidirectional invisibility, which turns PT-symmetric optics into a hotspot in research. Here, we report on the one-way localized Fabry-Pérot(FP) resonance, where a welldesigned PT optical resonator may operate at exceptional points with bidirectional transparency but unidirectional field localization. Overtones of such one-way localized FP resonance can be classified into a blue shifted branch and a red shifted branch. Therefore, the fundamental resonant frequency is not the lowest one. We find that the spatial field distributions of the overtones at the same absolute order are almost the same, even though their frequencies are quite different.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0303700)the National Natural Science Foundation of China(Grant Nos.11634006,11934009,and 12074184)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20191245)the State Key Laboratory of Acoustics,Chinese Academy of Sciences.
文摘Researches on parity-time(PT)symmetry in acoustic field can provide an efficient platform for controlling the travelling acoustic waves with balanced loss and gain.Here,we report a feasible design of PT-symmetric system constructed by piezoelectric composite plates with two different active external circuits.By judiciously adjusting the resistances and inductances in the external circuits,we obtain the exceptional point due to the spontaneous breaking of PT symmetry at the desired frequencies and can observe the unidirectional invisibility.Moreover,the system can be at PT exact phase or broken phase at the same frequency in the same structure by merely adjusting the external circuits,which represents the active control that makes the acoustic manipulation more convenient.Our study may provide a feasible way for manipulating acoustic waves and inspire the application of piezoelectric composite materials in acoustic structures.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674036)the Beijing Youth Top-notch Talent Support Program,China(Grant No.2017000026833ZK08)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(Grant Nos.IPOC2016ZT04 and IPOC2017ZZ05)
文摘In this paper, the (l+l)-dimensional variable-coefficient complex Ginzburg-Landau (CGL) equation with a parity- time (PT) symmetric potential U(x) is investigated. Although the CGL equations with a PT-symmetric potential are less reported analytically, the analytic solutions for the CGL equation are obtained with the bilinear method in this paper. Via the derived solutions, some soliton structures are presented with corresponding parameters, and the influences of them are analyzed and studied. The single-soliton structure is numerically verified, and its stability is analyzed against additive and multiplicative noises. In particular, we study the soliton dynamics under the impact of the PT-symmetric potential. Results show that the PT-symmetric potential plays an important role for obtaining soliton structures in ultrafast optics, and we can design fiber lasers and all-optical switches depending on the different amplitudes of soliton-like structures.
基金the National Natural Science Foundation of China(Grant Nos.12025401 and U1930402).
文摘We experimentally investigate the impact of static disorder and dynamic disorder on the non-unitary dynamics of parity-time(PT)-symmetric quantum walks.Via temporally alternating photon losses in an interferometric network,we realize the passive PT-symmetric quantum dynamics for single photons.Controllable coin operations allow us to simulate different environmental influences,which result in three different behaviors of quantum walkers:a standard ballistic spread,a diffusive behavior,and a localization,respectively,in a PT-symmetric quantum walk architecture.
基金the National Natural Science Foundation of China(Grant Nos.10804033,11174090,and 11174091)
文摘The existence and stability of defect solitons supported by parity-time (PT) symmetric defects in superlattices are investigated. In the semi-infinite gap, in-phase solitons are found to exist stably for positive defects, zero defects, and negative defects. In the first gap, out-of-phase solitons are stable for positive defects or zero defects, whereas in-phase solitons are stable for negative defects. For both the in-phase and out-of-phase solitons with the positive defect and in-phase solitons with negative defect in the first gap, there exists a cutoff point of the propagation constant below which the defect solitons vanish. The value of the cutoff point depends on the depth of defect and the imaginary parts of the PT symmetric defect potentials. The influence of the imaginary part of the PT symmetric defect potentials on soliton stability is revealed.
基金the Natural Science Foundation of Guangdong Province(Grant Nos.2018A030313480 and 2022A1515012377)。
文摘A model of the photonic spin Hall effect(PSHE)in antisymmetric parity-time(APT)metamaterials with incidence of Gaussian beams is proposed here.We derive the displacement expression of the PSHE in APT metamaterials based on the transport properties of Gaussian beams in positive and negative refractive index materials.Furthermore,detailed discussions are provided on the APT scattering matrix,eigenstate ratio,and response near exceptional points in the case of loss or gain.In contrast to the unidirectional non-reflection in parity-time(PT)symmetric systems,the transverse shift that arises from both sides of the APT structure is consistent.By effectively adjusting the parameters of APT materials,we achieve giant displacements of the transverse shift.Finally,we present a multi-layer APT structure consisting of alternating left-handed and right-handed materials.By increasing the number of layers,Bragg oscillations can be generated,leading to an increase in resonant peaks in transverse shift.This study presents a new approach to achieving giant transverse shifts in the APT structure.This lays a theoretical foundation for the fabrication of related nano-optical devices.
基金Supported by the National Natural Science Foundation of China (Grant Nos.11535004,11975167,11761161001,11375086,11565010,11881240623 and 11961141003)the National Key R&D Program of China (Grant Nos.2018YFA0404403 and 2016YFE0129300)+1 种基金the Science and Technology Development Fund of Macao (Grant No.008/2017/AFJ)the Fundamental Research Funds for the Central Universities (Grant Nos.22120210138 and 22120200101)。
文摘The non-Hermitian PT-symmetric system can live in either unbroken or broken PT-symmetric phase. The separation point of the unbroken and broken PT-symmetric phases is called the PT-phase-transition point.Conventionally, given an arbitrary non-Hermitian PT-symmetric Hamiltonian, one has to solve the corresponding Schrodinger equation explicitly in order to determine which phase it is actually in. Here, we propose to use artificial neural network(ANN) to determine the PT-phase-transition points for non-Hermitian PT-symmetric systems with short-range potentials. The numerical results given by ANN agree well with the literature, which shows the reliability of our new method.
基金Supported by the National Natural Science Foundation of China under Grant No 61308019the Foundation for Distinguished Young Scholars in Higher Education of Guangdong Province under Grant No Yq2013157
文摘The existence and stability of multipeaked solitons are investigated in a parity-time symmetric superlattice with dual periods under both self-focusing and self-defocusing nonlinearity. For self-defocusing nonlinearity, dipole solitons with low power and all the odd-peak solitons can exist stably in the first gap, while dipole solitons with high power and even-peak (except two) solitons are unstable. For self-focusing nonlinearity, even-peak out-of-phase solitons can propagate stably in the infinite gap, while odd-peak in-phase solitons are unstable.
基金Supported by Key Project of National Natural Science Foundation of China(No.51437005).
文摘The characteristics of the wireless power transfer(WPT)system vary under different transfer distances.As distance increases,efficiency drops off sharply,limiting the wider use of WPT technology.In order to mitigate this problem,this paper proposes a novel dual-coupled WPT system,where both electric-coupled mechanism and magnetic-coupled mechanism are utilized to enhance the transfer efficiency.Furthermore,a Parity-Time(PT)-symmetric circuit is utilized to realize robustness of the system.The coupled-mode model of the system is established and the expressions of operating frequency,transfer efficiency and output power are deduced.Analysis results indicate that in the unbroken PT-symmetric state,compared with single-coupled systems,the proposed system can keep constant performance within a longer distance;in broken PT-symmetric state,the proposed system has higher transfer efficiency.Simulated results and comparative results are in accordance with the theoretical analysis.Within 1.4m,this scheme can transfer power with constant efficiency of 77%and constant output power of 70W.
基金supported by the National Natural Science Foundation of China (NSFC)(No.11874228)。
文摘We show that inhomogeneous waveguides of slowly varied parity-time(PT) symmetry support localized optical resonances.The resonance is closely related to the formation of exceptional points separating exact and broken PT phases.Salient features of this kind of non-Hermitian resonance, including the formation of half-vortex flux and the discrete nature,are discussed.This investigation highlights the unprecedented uniqueness of field dynamics in non-Hermitian systems with many potential adaptive applications.
基金This work was supported by the National Natural Science Foundation of China(Nos.61307050 and 61701271)the Natural Science Foundation of Shandong Province(No.ZR2016AM27)。
文摘In order to realize the ultrastrong absorption of graphene with electrical modulation properties, we designed a composite structure of graphene and parity-time(PT) symmetry photonic crystal, which is achieved by placing the graphene layer on the top layer of the PT symmetry photonic crystal. In this paper, the absorption properties of graphene and the electrical modulating properties of the structure were theoretically analyzed based on the transfer matrix method. The result shows that the proposed structure can achieve the absorption of 31.5 d B for the communication wavelength of 1550 nm;meanwhile,by setting the electric field intensity to ±0.02 V/nm, the absorption of graphene can be largely modulated to realize an electrically switchable effect, the modulation depth of graphene absorption can reach nearly 100%, and the operation speed is also close to 8.171 GHz. This investigation provides a novel approach to design graphene-based optoelectronic devices and optical communication devices.
基金Supported by the National Natural Science Foundation of China under Grant No.11465008the Hunan Provincial Natural Science Foundation under Grant Nos.2015JJ4020 and 2015JJ2114the Scientific Research Fund of Hunan Provincial Education Department under Grant No.14A118
文摘We present exact analytical solutions to parity-time(P T) symmetric optical system describing light transport in P T-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken P T-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken P T-symmetric phase. These analytical results agree with the recent experimental observation reported by Ru¨ter et al. [Nat. Phys.6(2010) 192]. Besides, we present a scheme for manipulating P T symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated P T-symmetric system by tuning the modulation amplitude and frequency.
基金supported by the National Natural Science Foundation of China(Grant Nos.61368002,91736106,11674390,and 91836302)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF201711)+1 种基金the Foundation for Distinguished Young Scientists of Jiangxi Province(Grant No.20162BCB23009)the Graduate Innovation Special Fund of Jiangxi Province(Grant No.YC2019-S102)。
文摘We theoretically investigate the optical second-order sideband generation(OSSG)in an optical parity-time(PT)symmetric system,which consists of a passive cavity trapping the atomic ensemble and an active cavity.Compared with the double-passive system,it is found that near the exceptional point(EP),the efficiency of the OSSG increases sharply not only for the blue probepump detuning resonant case but also for the red one.Using experimentally achievable parameters,we study the effect of the atomic ensemble on the efficiency of the OSSG in the PT-symmetric system.The numerical results show that the efficiency of the OSSG is 30%higher than that of the first-order sideband,which is realized easily by simultaneously modulating the atom-cavity coupling strength and detuning.Moreover,the efficiency of the OSSG can also be tuned effectively by the pump power,and the efficiency is robust when the pump power is strong enough.This study may have some guidance for modulating the nonlinear optical properties and controlling light propagation,which may stimulate further applications in optical communications.
文摘We experimentally simulate a parity-time(PT)-symmetric quantum dynamics in a non-Hermitian system using a single-photon interferometer.We measure quantum final state using quantum state tomography.We observe the quantum state evolutions ranging from regions of unbroken to broken PT-symmetry using the single-photon interferometer.We experimentally prove that the eigenvalue of energy changes from real to imaginary corresponding to the non-Hermitian system from the PT-symmetry unbroken region to the PT-symmetry broken region.To the best of our knowledge,this is the first work to intuitively show the exceptional points of PT-symmetry non-unitary quantum dynamics in a single-photon interferometer from the energy perspective.
基金supported by the National Natural Science Foundation of China(Grant Nos.11674056 and U1930402)the Natural Science Foundation of Jiangsu Province(Grant No.BK20160024)the startup funding of Beijing Computational Science Research Center
文摘The study of non-Hermitian systems with parity-time(PT)symmetry is a rapidly developing frontier in recent years?Experimentally,PT-symmetric systems have been realized in classical optics by balancing gain and loss,which holds great promise for novel optical devices and networks?Here we report experimental realization of passive PT-symmetric quantum dynamics for single photons by temporally alternating photon losses in the quantum walk(QW)interferometers.The ability to impose PT symmetry allows us to realize and investigate Floquet topological phases driven by PT-symmetric QWs.We observe topological edge states between regions with different topological invariants?Topological invariants can be defined by winding numbers,Zak phases,general geometry phases and can be calculated?Can they be detected directly?We give an answer by reporting the experimental detection of bulk topological invariants in non-unitary QWs?The topological invariant of the non-unitary quantum walk is manifested in the quantized average displacement of the walker,which is probed by monitoring the photon loss.Furthermore,we report the experimental study of dynamic quantum phase transitions(DQPTs)and photonic skyrmions using discrete-time QWs?We simulate quench dynamics between distinct Floquet topological phases using quantum-walk dynamics,and experimentally characterize DQPTs and emergent skyrmion structures.Our results pave the way for realizing quantum mechanical PT-synthetic devices and augurs exciting possibilities for exploring topological properties of non-Hermitian systems using discretetime QWs.