The natural upper boundary of a forest(forest line) in mountain environments is an indicator of climate conditions. An increase in global average temperatures has resulted in an upward advance of the forest line. Th...The natural upper boundary of a forest(forest line) in mountain environments is an indicator of climate conditions. An increase in global average temperatures has resulted in an upward advance of the forest line. This advance may result in fragmentation of the alpine ecosystem and a loss of biodiversity. Therefore, it is important to identify potential areas where current forests can advance under scenarios of future climate change. I used expert knowledge and cartographic modeling to create a hybrid cartographic model considering five topographic variables to predict areas where forest line can expand in the future.The prediction accuracy of the model is around 82%. The model is able to predict areas above the current forest line that are suitable or unsuitable for future forest advance.Further inclusion of high-resolution satellite imagery and digital elevation models, as well as field-based information into the model can help to improve the model accuracy.展开更多
To evaluate the software behavior of the electronic control unit (ECU) of automotive electrical parking brake (EPB), a software- in-the-loop (SiL) simulation system is built. The EPB is simulated by ARX (auto-r...To evaluate the software behavior of the electronic control unit (ECU) of automotive electrical parking brake (EPB), a software- in-the-loop (SiL) simulation system is built. The EPB is simulated by ARX (auto-regressive with auxiliary input) model, ARMAX (auto-regressive moving average with auxiliary input) model, and NNARMAX (neural network ARMAX) model. By system identification, the ARX(3,4,2), ARX(4,4,2), ARMAX(3,3,1,1), and ARMAX(4,4,3,2) models are derived. Validation results show that the four-order ARMAX model and the NNARMAX model better simulate the actuator of the EPB.展开更多
文摘The natural upper boundary of a forest(forest line) in mountain environments is an indicator of climate conditions. An increase in global average temperatures has resulted in an upward advance of the forest line. This advance may result in fragmentation of the alpine ecosystem and a loss of biodiversity. Therefore, it is important to identify potential areas where current forests can advance under scenarios of future climate change. I used expert knowledge and cartographic modeling to create a hybrid cartographic model considering five topographic variables to predict areas where forest line can expand in the future.The prediction accuracy of the model is around 82%. The model is able to predict areas above the current forest line that are suitable or unsuitable for future forest advance.Further inclusion of high-resolution satellite imagery and digital elevation models, as well as field-based information into the model can help to improve the model accuracy.
基金Sichuan Province Key Discipline Con-struction for Automotive Engineering ( No.SZD0410 )Research Foundation of Xihua University (No.R0620301)
文摘To evaluate the software behavior of the electronic control unit (ECU) of automotive electrical parking brake (EPB), a software- in-the-loop (SiL) simulation system is built. The EPB is simulated by ARX (auto-regressive with auxiliary input) model, ARMAX (auto-regressive moving average with auxiliary input) model, and NNARMAX (neural network ARMAX) model. By system identification, the ARX(3,4,2), ARX(4,4,2), ARMAX(3,3,1,1), and ARMAX(4,4,3,2) models are derived. Validation results show that the four-order ARMAX model and the NNARMAX model better simulate the actuator of the EPB.