Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc...Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.展开更多
In crowded cities,searching for the availability of parking lots is a herculean task as it results in the wastage of drivers’time,increases air pollution,and traffic congestion.Smart parking systems facilitate the dr...In crowded cities,searching for the availability of parking lots is a herculean task as it results in the wastage of drivers’time,increases air pollution,and traffic congestion.Smart parking systems facilitate the drivers to determine the information about the parking lot in real time and book them depending on the requirement.But the existing smart parking systems necessitate the drivers to reveal their sensitive information that includes their mobile number,personal identity,and desired destination.This disclosure of sensitive information makes the existing centralized smart parking systems more vulnerable to service providers’security breaches,single points of failure,and bottlenecks.In this paper,an Improved Asymmetric Consortium Blockchain and Homomorphically Computing Univariate Polynomial-based private information retrieval(IACB-HCUPPIR)scheme is proposed to ensure parking lots’availability with transparency security in a privacy-preserving smart parking system.In specific,an improved Asymmetric Consortium Blockchain is used for achieving secure transactions between different parties interacting in the smart parking environment.It further adopted the method of Homomorphically Computing Univariate Polynomial-based private information retrieval(HCUPPIR)scheme for preserving the location privacy of drivers.The results of IACB-HCUPPIR confirmed better results in terms of minimized computation and communication overload with throughput,latency,and response time with maximized drivers’privacy preservation.Moreover,the proposed fully homomorphic algorithm(FHE)was compared against partial-homomorphic encryption(PHE)and technique without encryption and found that the proposed model has quick communication in allocating the parking slots starting with 24.3 s,whereas PHE starts allocating from 24.7 s and the technique without encryption starts at 27.4 s.Thus,we ensure the proposed model performs well in allocating parking slots with less time and high security with privacy preservation.展开更多
With the development of automatic driving and fuzzy theory, people pay more and more attention to the application of fuzzy logic in engineering technology. The automatic parking module in the automatic driving system ...With the development of automatic driving and fuzzy theory, people pay more and more attention to the application of fuzzy logic in engineering technology. The automatic parking module in the automatic driving system has always been the focus of research. Automatic parking modules can greatly assist drivers in parking operations, greatly reduce parking difficulties and make people more convenient and fast parking. In this paper, an automatic parking system based on the fuzzy controller is proposed. The fuzzy controller of automatic parking system is constructed by using fuzzy theory, and the robustness of the whole system is examined by fuzzy logic. Firstly, the vehicle motion rules and trajectory changes are analyzed in detail, and the real parking lot model is simulated. Then, the input and output variables of the whole system are analyzed by fuzzy theory and the membership function is constructed. Based on the experience of human experts, the parking rules are tested and summarized, and a reasonable and practical rule base is established. Finally, MATLAB is used to code, build the visual interface of parking lot and vehicles, and draw the cyclic iterative function to detect the vehicle position and direction angle, so as to act as a sensor. The results show that using a fuzzy controller to construct an automatic parking system can effectively improve the parking level.展开更多
The searching of parking burns a lot of barrels of the world’s oil every day. Car parking problem is a major contributor in congestion of traffic and has been, still a major problem with increasing vehicle size in th...The searching of parking burns a lot of barrels of the world’s oil every day. Car parking problem is a major contributor in congestion of traffic and has been, still a major problem with increasing vehicle size in the luxurious segment and also confines parking spaces in urban cities. The rapid growth in the number of vehicles worldwide is intensifying the problem of the lack of parking space. As the global population continues to urbanize, without a well-planned, convenience-driven retreat from the car, these problems will worsen in many countries. The current unmanaged car parks and transportation facilities make it difficult to accommodate the increasing number of vehicles in a proper, convenient manner so it is necessary to have an efficient and smart parking system. Smart parking management systems are capable of providing extreme level of convenience to the drivers. In this paper, a proposed web App system, named “Park Easy” is based on the usage of smart phones, sensors monitoring techniques with a camera which is used as a sensor to take photos to show the occupancy of cars parks. By implementing this system, the utilization of parking spaces will increase. It allocates available parking space to a given driver to park their vehicle, renew the availability of the parking space when the car leaves and compute the charges due. Smart parking App, “Park Easy”, will also enable most important techniques to provide all the possible shortage route for parking from any area of the city mainly, it helps to predict accurately and sense spot/vehicle occupancy in real-time.展开更多
As the number of motor vehicles increases rapidly in many populated countries, t he shortage of parking space has become a difficult problem to all cities around the world. The contradiction between the shortage of pa...As the number of motor vehicles increases rapidly in many populated countries, t he shortage of parking space has become a difficult problem to all cities around the world. The contradiction between the shortage of parking space and the incr easing number of motor vehicles is still growing in the recent years. The utiliz ation of various kinds of mechanical parking facilities is an effective solution to this problem. How to organize a reasonable logistics system in a mechanical parking lot so that as many parking positions as possible can be constructed wit hin a limited space at the lowest cost is a long challenging subject for enginee ring designers. Obviously, it is of great value to approach this subject theoret ically and systematically. Based on the study of the development of different me chanical parking facilities, the features, definitions, classifications and eval uation indexes of mechanical parking logistics systems are discussed in this pap er. The static and dynamic characteristics of different systems are also analyze d.展开更多
The better management of resources and the potential improvement in trafc congestion via reducing the orbiting time for parking spaces is crucial in a smart city,particularly those with an uneven correlation between t...The better management of resources and the potential improvement in trafc congestion via reducing the orbiting time for parking spaces is crucial in a smart city,particularly those with an uneven correlation between the increase in vehicles and infrastructure.This paper proposes and analyses a novel green IoT-based Pay-As-You-Go(PAYG)smart parking system by utilizing unused garage parking spaces.The article also presents an intelligent system that offers the most favorable prices to its users by matching private garages’pricing portfolio with a garage’s current demand.Malta,the world’s fourth-most densely populated country,is considered as a case of a smart city for the implementation of the proposed approach.The results obtained conrm that apart from having a high potential system in such countries,the pricing generated correctly forecasts the demand for a particular garage at a specic time of the day and year.The proposed PAYG smart parking system can effectively contribute to the macro solution to trafc congestion by encouraging potential users to use the system’s services and reducing the orbiting time for parking.展开更多
Smart parking systems are a crucial component of the “smart city” concept, especially in the age of the Internet of Things (IoT). They aim to take the stress out of finding a vacant parking spot in city centers, due...Smart parking systems are a crucial component of the “smart city” concept, especially in the age of the Internet of Things (IoT). They aim to take the stress out of finding a vacant parking spot in city centers, due to the increasing number of cars, especially during peak hours. To realize the concept of smart parking, IoT-enabling technologies must be utilized, as the traditional way of developing smart parking solutions entails a lack of scalability, compatibility with IoT-constrained devices, security, and privacy awareness. In this paper, we propose a secure and privacy-preserving framework for smart parking systems. The framework relies on the publish/subscribe communication model for exchanging a huge volume of data with a large number of clients. On one hand, it provides functional services, including parking vacancy detection, real-time information for drivers about parking availability, driver guidance, and parking reservation. On the other hand, it provides security approaches on both the network and application layers. In addition, it supports mutual authentication mechanisms between entities to ensure device/ data authenticity, and provide security protection for users. That makes our proposed framework resilient to various types of security attacks, such as replay, phishing, and man-in-the-middle attacks. Finally, we analyze the performance of our framework, which is suitable for IoT devices, in terms of computation and network overhead.展开更多
The traffic accidents, traffic jams and parking problems come to appear, and have caused more and more concerns of people. The automatic parking system can help us a lot to solve these problems. The automatic parking ...The traffic accidents, traffic jams and parking problems come to appear, and have caused more and more concerns of people. The automatic parking system can help us a lot to solve these problems. The automatic parking system in this paper includes two sections, environment perception and automatic controller. The median filter and least square method are used to process the laser sensor data. Then, feasible parking space can be displayed by using K-means clustering method. The Matlab fuzzy GUI is used to establish the fuzzy controller. The kinematics equation of car is utilized to simulate the automatic vertical parking in the Matlab/simulation with the different initial path angles. Experiment results show that the environmental perception method has perfect performance and the controlling algorithm of the automatic parking system has good feasibility.展开更多
System supported smart parking can reduce traffic by making it stress free to locate empty parking spaces,hence lowering the risk of unfocussed driving.In this study,we propose a smart parking system using deep learni...System supported smart parking can reduce traffic by making it stress free to locate empty parking spaces,hence lowering the risk of unfocussed driving.In this study,we propose a smart parking system using deep learning and an application-based approach.This system has two modules,one module detects and recognizes a license plate(LP),and the other selects a parking space;both modules use deep learning techniques.We used two modules that work independently to detect and recognize an LP by using an image of the vehicle.To detect parking space,only deep learning techniques were used.The two modules were compared with other state-of-the-art solutions.We utilized the You Only Look Once(YOLO)architecture to detect and recognize an LP because its performance in the context of Saudi Arabian LP numbers was superior to that of other solutions.Compared with existing state-of-the-art solutions,the performance of the proposed solution was more effective.The solution can be further improved for use in the city and large organizations that have priority parking spaces.A dataset of LP-annotated images of vehicles was used.The results of this study have considerable implications for smart parking,particularly in universities;in addition,they can be utilized for smart cities.展开更多
With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerba...With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerbated these challenges. This pressing issue underscores the critical necessity for a structured approach to managing university entries and overseeing parking at the gates. The proposed smart parking management system aims to address these concerns by introducing a design concept that restricts unauthorized access and provides exclusive parking privileges to authorized users. Through image processing, the system identifies available parking spaces, relaying real-time information to users via a mobile application. This comprehensive solution also generates detailed reports (daily, weekly, and monthly), aiding university safety authorities in future gate management decisions.展开更多
Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adja...Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees.展开更多
In today’s smart city transportation,traffic congestion is a vexing issue,and vehicles seeking parking spaces have been identified as one of the causes leading to approximately 40%of traffic congestion.Identifying pa...In today’s smart city transportation,traffic congestion is a vexing issue,and vehicles seeking parking spaces have been identified as one of the causes leading to approximately 40%of traffic congestion.Identifying parking spaces alone is insufficient because an identified available parking space may have been taken by another vehicle when it arrives,resulting in the driver’s frustration and aggravating traffic jams while searching for another parking space.This explains the need to predict the availability of parking spaces.Recently,deep learning(DL)has been shown to facilitate drivers to find parking spaces efficiently,leading to a promising performance enhancement in parking identification and prediction systems.However,no work reviews DL approaches applied to solve parking identification and prediction problems.Inspired by this gap,the purpose of this work is to investigate,highlight,and report on recent advances inDLapproaches applied to predict and identify the availability of parking spaces.Ataxonomy of DL-based parking identification and prediction systems is established as a methodology by classifying and categorizing existing literature,and by doing so,the salient and supportive features of different DL techniques for providing parking solutions are presented.Moreover,several open research challenges are outlined.This work identifies that there are various DL architectures,datasets,and performance measures used to address parking identification and prediction problems.Moreover,there are some open-source implementations available that can be used directly either to extend existing works or explore a new domain.This is the first short survey article that focuses on the use of DL-based techniques in parking identification and prediction systems for smart cities.This study concludes that although the deployment of DL in parking identification and prediction systems provides various benefits,the convergence of these two types of systems and DL brings about new issues that must be resolved in the near future.展开更多
The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle parti...The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.展开更多
By coordination and cooperation between multi-agents, this paper proposes the network of intelligent agents which can reduce the search time needed to finding a parking place. Based on multi-agent model, the fined sol...By coordination and cooperation between multi-agents, this paper proposes the network of intelligent agents which can reduce the search time needed to finding a parking place. Based on multi-agent model, the fined solution is designed to help drivers in finding a parking space at anytime and anywhere. Three services are offered: the search for a vacant place, directions to a parking space and booking a place for parking. The results of this study generated by the platform MATSim transport simulation, show that our approach optimizes the operation of vehicles in a parking need with the aim of reducing congestion, and improve traffic flow in urban area. A comparison between the first method where the vehicles are random and the second method where vehicles are steered to vacant parking spaces shows that the minimization of time looking for a parking space could improve circulation by reducing the number of cars in the morning of 2% and 0.7% of the evening. In addition, the traffic per hour per day was reduced by approximately 4.17%.展开更多
Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck s...Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck stops are the only places for the trucks to stop legally and safely. In locations without sufficient parking areas, trucks often park on interstate ramps, which create safety risks for other interstate motorists. Historically, agencies have employed costly and time intensive manual counting methods, camera surveillance, and driver surveys to assess truck parking. Connected truck data, available in near real-time, offers an efficient alternative to practitioners to assess truck parking patterns and identify areas where there may be insufficient safe parking spaces. This paper presents a case study of interstate I-70 in east central Indiana and documents the observed spatiotemporal impacts of a rest area closure on truck parking on nearby interstate ramps. Results showed that there was a 28% increase in parking on ramps during the rest area closure. Analysis also found that ramps closest to the rest area were most impacted by the closure, seeing a rise in truck parking sessions as high as 2.7 times. Parking duration on the ramps during rest area closure also increased drastically. Although it was expected that this would result in increased parking by trucks on adjacent ramps, this before, during, after scenario provided an ideal scenario to evaluate the robustness of these techniques to assess changing parking characteristics of long-haul commercial trucks. The data analytics and visualization tools presented in this study are scalable nationwide and will aid stakeholders in informed data-driven decision making when allocating resources towards improving the nations commercial vehicle parking infrastructure.展开更多
Despite cities being recognized as being potential sources of microplastic pollution to the wider environment, most surveys of COVID-19 plastic-based litter have been undertaken through linear transects of marine beac...Despite cities being recognized as being potential sources of microplastic pollution to the wider environment, most surveys of COVID-19 plastic-based litter have been undertaken through linear transects of marine beaches. For the far fewer number of studies conducted on inland and urban locations, the site-specific focus has primarily been surveys along the length of streets. The present study is the first to specifically assess the standing stock (i.e., moment-in-time) of littered face masks for the entire surface area of urban parking lots. The density of face masks in 50 parking lots in a Canadian coastal town (0.00054 m2 ± 0.00051 m2) was found to be significantly greater than the background level of littering of town streets. Face mask density was significantly related to visitation “usage” of parking lots as gauged by the areal size of the lots and of their onsite buildings, as well as the number of vehicles present. Neither parking lot typology nor estimates of inferred export (various measures of wind exposure) and entrapment (various metrics of obstruction) of face masks had a significant influence on the extent of whole-lot littering. In consequence, modelling of the potential input of mask-derived microplastics to the marine environment from coastal communities can use the areal density of face masks found here in association with the total surface area of lots for individual municipalities as determined through GIS analysis.展开更多
In recent years,disorderly parking and difficult charging of electric bicycles have been challenges in urban management.The rapid growth of electric bicycles is in contradiction with the lack of dedicated parking spac...In recent years,disorderly parking and difficult charging of electric bicycles have been challenges in urban management.The rapid growth of electric bicycles is in contradiction with the lack of dedicated parking spaces and charging service facilities in towns and villages.To solve the issue of parking and charging electric bicycles in limited urban and rural spaces,prefabricated building technology is applied to the design of a multi-story electric bicycle parking lot.The multi-story prefabricated electric bicycle parking lot is utilized in urban and rural planning and design to upgrade parking facilities in old urban areas,land-constrained commercial areas,as well as counties,towns,and rural areas with inadequate municipal facilities.Multi-story prefabricated electric bicycle parking lots are the application exploration of industrial buildings,and promote the high-quality development planning and construction of towns and counties and villages.Compared with the single-story metal charging station,the multi-story assembled electric bicycle parking lot has the characteristics of integrating parking and charging,being more durable and safer in structure,accommodating a large number of vehicles,and improving the space utilization rate.展开更多
The intelligent security system is a series of systems that use modern information technology means such as artificial intelligence, cloud computing, big data, face recognition to carry out comprehensive monitoring, e...The intelligent security system is a series of systems that use modern information technology means such as artificial intelligence, cloud computing, big data, face recognition to carry out comprehensive monitoring, early warning, prevention and control, disposal, etc, for security protection. It is the development trend of security system in the future, and it is also the basis for open sharing between higher education parks and universities. By using content analysis, unstructured interviews and other research methods, this paper deeply studies the feasibility and basic ideas of the construction of intelligent security system in Shahe Higher Education Park, and forms basic experience and typical practices through the project construction, which further promotes the more intelligent, standardized and scientific safety management in colleges and universities. It really provides an important theoretical basis and practical guidance for the opening and sharing between higher education parks and universities.展开更多
The increasing rate of private car usage in the urban areas as a result of fast-growing economy,derelict policies and subsidies are the main causes making car parking one of the main concerns for transport and traffic...The increasing rate of private car usage in the urban areas as a result of fast-growing economy,derelict policies and subsidies are the main causes making car parking one of the main concerns for transport and traffic management all over the world.The coordination between parking policies and traffic management revealed how parking is becoming a barrier to the through-traffic operation.Also,it is responsible for the inefficient use of available resources,even the decisions are made on an ad-hoc basis while making policy.Hence,it is necessary to understand the parking choice behaviour and actual demand of parking space.In the last three decades,ample studies have been done to evaluate parking characteristics,to estimate the demand for parking and on driver’s behaviour while choosing the parking space.This paper integrates all these aspects and presents the state-of-the-art review of models and studies on the parking system.Problems related to and due to the parking,various parking characteristics and their applications,parking choice behaviour of drivers,development of demand models considering various factors and review of parking policies as an integral part of the urban transport system are discussed in detail.Whilst underdeveloped,authors found the literatures suggest that greater attention should be given to metrics like ease of access,walk time,parking charges,parking guidance and information system,management,etc.,at all stages of planning and policy formulation.Taken together,mentioned studies demonstrate useful information concerning the entire parking system.It also provides useful information to the planners and policy makers for planning,designing and evaluating parking system.展开更多
This paper introduces a parking management system based on a wireless sensor network developed by our group. The system consists of a large amount of parking space monitoring nodes, a few parking guiding nodes, a sink...This paper introduces a parking management system based on a wireless sensor network developed by our group. The system consists of a large amount of parking space monitoring nodes, a few parking guiding nodes, a sink node and a management station. All the nodes exchange information with each other through wireless communication. The prototype of the parking management system has been implemented and the preliminary test results show that the performance of the system can satisfy the requirements of the application.展开更多
基金Supported by National Key R&D Program of China (Grant No.2021YFB2501800)National Natural Science Foundation of China (Grant No.52172384)+1 种基金Science and Technology Innovation Program of Hunan Province of China (Grant No.2021RC3048)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle of China (Grant No.72275004)。
文摘Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
基金The research was funded by the School of Information Technology and Engineering,Vellore Institute of Technology,Vellore 632014,Tamil Nadu,India.
文摘In crowded cities,searching for the availability of parking lots is a herculean task as it results in the wastage of drivers’time,increases air pollution,and traffic congestion.Smart parking systems facilitate the drivers to determine the information about the parking lot in real time and book them depending on the requirement.But the existing smart parking systems necessitate the drivers to reveal their sensitive information that includes their mobile number,personal identity,and desired destination.This disclosure of sensitive information makes the existing centralized smart parking systems more vulnerable to service providers’security breaches,single points of failure,and bottlenecks.In this paper,an Improved Asymmetric Consortium Blockchain and Homomorphically Computing Univariate Polynomial-based private information retrieval(IACB-HCUPPIR)scheme is proposed to ensure parking lots’availability with transparency security in a privacy-preserving smart parking system.In specific,an improved Asymmetric Consortium Blockchain is used for achieving secure transactions between different parties interacting in the smart parking environment.It further adopted the method of Homomorphically Computing Univariate Polynomial-based private information retrieval(HCUPPIR)scheme for preserving the location privacy of drivers.The results of IACB-HCUPPIR confirmed better results in terms of minimized computation and communication overload with throughput,latency,and response time with maximized drivers’privacy preservation.Moreover,the proposed fully homomorphic algorithm(FHE)was compared against partial-homomorphic encryption(PHE)and technique without encryption and found that the proposed model has quick communication in allocating the parking slots starting with 24.3 s,whereas PHE starts allocating from 24.7 s and the technique without encryption starts at 27.4 s.Thus,we ensure the proposed model performs well in allocating parking slots with less time and high security with privacy preservation.
文摘With the development of automatic driving and fuzzy theory, people pay more and more attention to the application of fuzzy logic in engineering technology. The automatic parking module in the automatic driving system has always been the focus of research. Automatic parking modules can greatly assist drivers in parking operations, greatly reduce parking difficulties and make people more convenient and fast parking. In this paper, an automatic parking system based on the fuzzy controller is proposed. The fuzzy controller of automatic parking system is constructed by using fuzzy theory, and the robustness of the whole system is examined by fuzzy logic. Firstly, the vehicle motion rules and trajectory changes are analyzed in detail, and the real parking lot model is simulated. Then, the input and output variables of the whole system are analyzed by fuzzy theory and the membership function is constructed. Based on the experience of human experts, the parking rules are tested and summarized, and a reasonable and practical rule base is established. Finally, MATLAB is used to code, build the visual interface of parking lot and vehicles, and draw the cyclic iterative function to detect the vehicle position and direction angle, so as to act as a sensor. The results show that using a fuzzy controller to construct an automatic parking system can effectively improve the parking level.
文摘The searching of parking burns a lot of barrels of the world’s oil every day. Car parking problem is a major contributor in congestion of traffic and has been, still a major problem with increasing vehicle size in the luxurious segment and also confines parking spaces in urban cities. The rapid growth in the number of vehicles worldwide is intensifying the problem of the lack of parking space. As the global population continues to urbanize, without a well-planned, convenience-driven retreat from the car, these problems will worsen in many countries. The current unmanaged car parks and transportation facilities make it difficult to accommodate the increasing number of vehicles in a proper, convenient manner so it is necessary to have an efficient and smart parking system. Smart parking management systems are capable of providing extreme level of convenience to the drivers. In this paper, a proposed web App system, named “Park Easy” is based on the usage of smart phones, sensors monitoring techniques with a camera which is used as a sensor to take photos to show the occupancy of cars parks. By implementing this system, the utilization of parking spaces will increase. It allocates available parking space to a given driver to park their vehicle, renew the availability of the parking space when the car leaves and compute the charges due. Smart parking App, “Park Easy”, will also enable most important techniques to provide all the possible shortage route for parking from any area of the city mainly, it helps to predict accurately and sense spot/vehicle occupancy in real-time.
文摘As the number of motor vehicles increases rapidly in many populated countries, t he shortage of parking space has become a difficult problem to all cities around the world. The contradiction between the shortage of parking space and the incr easing number of motor vehicles is still growing in the recent years. The utiliz ation of various kinds of mechanical parking facilities is an effective solution to this problem. How to organize a reasonable logistics system in a mechanical parking lot so that as many parking positions as possible can be constructed wit hin a limited space at the lowest cost is a long challenging subject for enginee ring designers. Obviously, it is of great value to approach this subject theoret ically and systematically. Based on the study of the development of different me chanical parking facilities, the features, definitions, classifications and eval uation indexes of mechanical parking logistics systems are discussed in this pap er. The static and dynamic characteristics of different systems are also analyze d.
基金funding by the University of Malta’s Internal Research Grants.
文摘The better management of resources and the potential improvement in trafc congestion via reducing the orbiting time for parking spaces is crucial in a smart city,particularly those with an uneven correlation between the increase in vehicles and infrastructure.This paper proposes and analyses a novel green IoT-based Pay-As-You-Go(PAYG)smart parking system by utilizing unused garage parking spaces.The article also presents an intelligent system that offers the most favorable prices to its users by matching private garages’pricing portfolio with a garage’s current demand.Malta,the world’s fourth-most densely populated country,is considered as a case of a smart city for the implementation of the proposed approach.The results obtained conrm that apart from having a high potential system in such countries,the pricing generated correctly forecasts the demand for a particular garage at a specic time of the day and year.The proposed PAYG smart parking system can effectively contribute to the macro solution to trafc congestion by encouraging potential users to use the system’s services and reducing the orbiting time for parking.
文摘Smart parking systems are a crucial component of the “smart city” concept, especially in the age of the Internet of Things (IoT). They aim to take the stress out of finding a vacant parking spot in city centers, due to the increasing number of cars, especially during peak hours. To realize the concept of smart parking, IoT-enabling technologies must be utilized, as the traditional way of developing smart parking solutions entails a lack of scalability, compatibility with IoT-constrained devices, security, and privacy awareness. In this paper, we propose a secure and privacy-preserving framework for smart parking systems. The framework relies on the publish/subscribe communication model for exchanging a huge volume of data with a large number of clients. On one hand, it provides functional services, including parking vacancy detection, real-time information for drivers about parking availability, driver guidance, and parking reservation. On the other hand, it provides security approaches on both the network and application layers. In addition, it supports mutual authentication mechanisms between entities to ensure device/ data authenticity, and provide security protection for users. That makes our proposed framework resilient to various types of security attacks, such as replay, phishing, and man-in-the-middle attacks. Finally, we analyze the performance of our framework, which is suitable for IoT devices, in terms of computation and network overhead.
文摘The traffic accidents, traffic jams and parking problems come to appear, and have caused more and more concerns of people. The automatic parking system can help us a lot to solve these problems. The automatic parking system in this paper includes two sections, environment perception and automatic controller. The median filter and least square method are used to process the laser sensor data. Then, feasible parking space can be displayed by using K-means clustering method. The Matlab fuzzy GUI is used to establish the fuzzy controller. The kinematics equation of car is utilized to simulate the automatic vertical parking in the Matlab/simulation with the different initial path angles. Experiment results show that the environmental perception method has perfect performance and the controlling algorithm of the automatic parking system has good feasibility.
文摘System supported smart parking can reduce traffic by making it stress free to locate empty parking spaces,hence lowering the risk of unfocussed driving.In this study,we propose a smart parking system using deep learning and an application-based approach.This system has two modules,one module detects and recognizes a license plate(LP),and the other selects a parking space;both modules use deep learning techniques.We used two modules that work independently to detect and recognize an LP by using an image of the vehicle.To detect parking space,only deep learning techniques were used.The two modules were compared with other state-of-the-art solutions.We utilized the You Only Look Once(YOLO)architecture to detect and recognize an LP because its performance in the context of Saudi Arabian LP numbers was superior to that of other solutions.Compared with existing state-of-the-art solutions,the performance of the proposed solution was more effective.The solution can be further improved for use in the city and large organizations that have priority parking spaces.A dataset of LP-annotated images of vehicles was used.The results of this study have considerable implications for smart parking,particularly in universities;in addition,they can be utilized for smart cities.
文摘With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerbated these challenges. This pressing issue underscores the critical necessity for a structured approach to managing university entries and overseeing parking at the gates. The proposed smart parking management system aims to address these concerns by introducing a design concept that restricts unauthorized access and provides exclusive parking privileges to authorized users. Through image processing, the system identifies available parking spaces, relaying real-time information to users via a mobile application. This comprehensive solution also generates detailed reports (daily, weekly, and monthly), aiding university safety authorities in future gate management decisions.
基金supported by National Natural Science Foundation of China(52222215, 52272420, 52072051)。
文摘Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees.
文摘In today’s smart city transportation,traffic congestion is a vexing issue,and vehicles seeking parking spaces have been identified as one of the causes leading to approximately 40%of traffic congestion.Identifying parking spaces alone is insufficient because an identified available parking space may have been taken by another vehicle when it arrives,resulting in the driver’s frustration and aggravating traffic jams while searching for another parking space.This explains the need to predict the availability of parking spaces.Recently,deep learning(DL)has been shown to facilitate drivers to find parking spaces efficiently,leading to a promising performance enhancement in parking identification and prediction systems.However,no work reviews DL approaches applied to solve parking identification and prediction problems.Inspired by this gap,the purpose of this work is to investigate,highlight,and report on recent advances inDLapproaches applied to predict and identify the availability of parking spaces.Ataxonomy of DL-based parking identification and prediction systems is established as a methodology by classifying and categorizing existing literature,and by doing so,the salient and supportive features of different DL techniques for providing parking solutions are presented.Moreover,several open research challenges are outlined.This work identifies that there are various DL architectures,datasets,and performance measures used to address parking identification and prediction problems.Moreover,there are some open-source implementations available that can be used directly either to extend existing works or explore a new domain.This is the first short survey article that focuses on the use of DL-based techniques in parking identification and prediction systems for smart cities.This study concludes that although the deployment of DL in parking identification and prediction systems provides various benefits,the convergence of these two types of systems and DL brings about new issues that must be resolved in the near future.
基金supported in part by the Natural Science Foundation of Shandong Province of China(ZR202103040180)the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-004the Fundamental Research Funds for the Central Universities under Grant 20CX05019A.
文摘The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.
文摘By coordination and cooperation between multi-agents, this paper proposes the network of intelligent agents which can reduce the search time needed to finding a parking place. Based on multi-agent model, the fined solution is designed to help drivers in finding a parking space at anytime and anywhere. Three services are offered: the search for a vacant place, directions to a parking space and booking a place for parking. The results of this study generated by the platform MATSim transport simulation, show that our approach optimizes the operation of vehicles in a parking need with the aim of reducing congestion, and improve traffic flow in urban area. A comparison between the first method where the vehicles are random and the second method where vehicles are steered to vacant parking spaces shows that the minimization of time looking for a parking space could improve circulation by reducing the number of cars in the morning of 2% and 0.7% of the evening. In addition, the traffic per hour per day was reduced by approximately 4.17%.
文摘Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck stops are the only places for the trucks to stop legally and safely. In locations without sufficient parking areas, trucks often park on interstate ramps, which create safety risks for other interstate motorists. Historically, agencies have employed costly and time intensive manual counting methods, camera surveillance, and driver surveys to assess truck parking. Connected truck data, available in near real-time, offers an efficient alternative to practitioners to assess truck parking patterns and identify areas where there may be insufficient safe parking spaces. This paper presents a case study of interstate I-70 in east central Indiana and documents the observed spatiotemporal impacts of a rest area closure on truck parking on nearby interstate ramps. Results showed that there was a 28% increase in parking on ramps during the rest area closure. Analysis also found that ramps closest to the rest area were most impacted by the closure, seeing a rise in truck parking sessions as high as 2.7 times. Parking duration on the ramps during rest area closure also increased drastically. Although it was expected that this would result in increased parking by trucks on adjacent ramps, this before, during, after scenario provided an ideal scenario to evaluate the robustness of these techniques to assess changing parking characteristics of long-haul commercial trucks. The data analytics and visualization tools presented in this study are scalable nationwide and will aid stakeholders in informed data-driven decision making when allocating resources towards improving the nations commercial vehicle parking infrastructure.
文摘Despite cities being recognized as being potential sources of microplastic pollution to the wider environment, most surveys of COVID-19 plastic-based litter have been undertaken through linear transects of marine beaches. For the far fewer number of studies conducted on inland and urban locations, the site-specific focus has primarily been surveys along the length of streets. The present study is the first to specifically assess the standing stock (i.e., moment-in-time) of littered face masks for the entire surface area of urban parking lots. The density of face masks in 50 parking lots in a Canadian coastal town (0.00054 m2 ± 0.00051 m2) was found to be significantly greater than the background level of littering of town streets. Face mask density was significantly related to visitation “usage” of parking lots as gauged by the areal size of the lots and of their onsite buildings, as well as the number of vehicles present. Neither parking lot typology nor estimates of inferred export (various measures of wind exposure) and entrapment (various metrics of obstruction) of face masks had a significant influence on the extent of whole-lot littering. In consequence, modelling of the potential input of mask-derived microplastics to the marine environment from coastal communities can use the areal density of face masks found here in association with the total surface area of lots for individual municipalities as determined through GIS analysis.
文摘In recent years,disorderly parking and difficult charging of electric bicycles have been challenges in urban management.The rapid growth of electric bicycles is in contradiction with the lack of dedicated parking spaces and charging service facilities in towns and villages.To solve the issue of parking and charging electric bicycles in limited urban and rural spaces,prefabricated building technology is applied to the design of a multi-story electric bicycle parking lot.The multi-story prefabricated electric bicycle parking lot is utilized in urban and rural planning and design to upgrade parking facilities in old urban areas,land-constrained commercial areas,as well as counties,towns,and rural areas with inadequate municipal facilities.Multi-story prefabricated electric bicycle parking lots are the application exploration of industrial buildings,and promote the high-quality development planning and construction of towns and counties and villages.Compared with the single-story metal charging station,the multi-story assembled electric bicycle parking lot has the characteristics of integrating parking and charging,being more durable and safer in structure,accommodating a large number of vehicles,and improving the space utilization rate.
文摘The intelligent security system is a series of systems that use modern information technology means such as artificial intelligence, cloud computing, big data, face recognition to carry out comprehensive monitoring, early warning, prevention and control, disposal, etc, for security protection. It is the development trend of security system in the future, and it is also the basis for open sharing between higher education parks and universities. By using content analysis, unstructured interviews and other research methods, this paper deeply studies the feasibility and basic ideas of the construction of intelligent security system in Shahe Higher Education Park, and forms basic experience and typical practices through the project construction, which further promotes the more intelligent, standardized and scientific safety management in colleges and universities. It really provides an important theoretical basis and practical guidance for the opening and sharing between higher education parks and universities.
基金a part of the project"Land-use based parking policy:a case study of Delhi"and funded by CSIR Central Road Research Institute(CRRI).
文摘The increasing rate of private car usage in the urban areas as a result of fast-growing economy,derelict policies and subsidies are the main causes making car parking one of the main concerns for transport and traffic management all over the world.The coordination between parking policies and traffic management revealed how parking is becoming a barrier to the through-traffic operation.Also,it is responsible for the inefficient use of available resources,even the decisions are made on an ad-hoc basis while making policy.Hence,it is necessary to understand the parking choice behaviour and actual demand of parking space.In the last three decades,ample studies have been done to evaluate parking characteristics,to estimate the demand for parking and on driver’s behaviour while choosing the parking space.This paper integrates all these aspects and presents the state-of-the-art review of models and studies on the parking system.Problems related to and due to the parking,various parking characteristics and their applications,parking choice behaviour of drivers,development of demand models considering various factors and review of parking policies as an integral part of the urban transport system are discussed in detail.Whilst underdeveloped,authors found the literatures suggest that greater attention should be given to metrics like ease of access,walk time,parking charges,parking guidance and information system,management,etc.,at all stages of planning and policy formulation.Taken together,mentioned studies demonstrate useful information concerning the entire parking system.It also provides useful information to the planners and policy makers for planning,designing and evaluating parking system.
基金Supported by National Natural Science Foundation of P. R. China (60373049) National Basic Research Program of P.R.China (2006CB 3030000)
文摘This paper introduces a parking management system based on a wireless sensor network developed by our group. The system consists of a large amount of parking space monitoring nodes, a few parking guiding nodes, a sink node and a management station. All the nodes exchange information with each other through wireless communication. The prototype of the parking management system has been implemented and the preliminary test results show that the performance of the system can satisfy the requirements of the application.