This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivot...This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease,encompassing diverse components such as the gut microbiota,immune system,metabolism,and neural pathways.The gut microbiome,profoundly influenced by dietary factors,emerges as a key player.Nutrition during the first 1000 days of life shapes the gut microbiota composition,influencing immune responses and impacting both child development and adult health.High-fat,high-sugar diets can disrupt this delicate balance,contributing to inflammation and immune dysfunction.Exploring nutritional strategies,the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk.Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders.Beyond nutrition,emerging research uncovers potential interactions between steroid hormones,nutrition,and Parkinson's disease.Progesterone,with its anti-inflammatory properties and presence in the nervous system,offers a novel option for Parkinson's disease therapy.Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects.The review addresses the hypothesis thatα-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve.Gastrointestinal symptoms preceding motor symptoms support this hypothesis.Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances,emphasizing the potential of microbiota-based interventions.In summary,this review uncovers the complex web of interactions between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the gut-brain axis framework.Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.展开更多
The search fo r reliable and easily accessible biomarkers in Parkinson's disease is receiving a growing emphasis,to detect neurodegeneration from the prodromal phase and to enforce disease-modifying therapies.Desp...The search fo r reliable and easily accessible biomarkers in Parkinson's disease is receiving a growing emphasis,to detect neurodegeneration from the prodromal phase and to enforce disease-modifying therapies.Despite the need for non-invasively accessible biomarke rs,the majo rity of the studies have pointed to cerebrospinal fluid or peripheral biopsies biomarkers,which require invasive collection procedures.Saliva represents an easily accessible biofluid and an incredibly wide source of molecular biomarkers.In the present study,after presenting the morphological and biological bases for looking at saliva in the search of biomarkers for Parkinson's disease,we systematically reviewed the results achieved so far in the saliva of different cohorts of Parkinson's disease patients.A comprehensive literature search on PubMed and SCOPUS led to the discovery of 289articles.After screening and exclusion,34 relevant articles were derived fo r systematic review.Alpha-synuclein,the histopathological hallmark of Parkinson's disease,has been the most investigated Parkinson's disease biomarker in saliva,with oligomeric alphasynuclein consistently found increased in Parkinson's disease patients in comparison to healthy controls,while conflicting results have been reported regarding the levels of total alpha-synuclein and phosphorylated alpha-synuclein,and few studies described an increased oligomeric alpha-synuclein/total alpha-synuclein ratio in Parkinson's disease.Beyond alpha-synuclein,other biomarkers to rgeting diffe rent molecular pathways have been explored in the saliva of Parkinson's disease patients:total tau,phosphorylated tau,amyloid-β1-42(pathological protein aggregation biomarkers);DJ-1,heme-oxygenase-l,metabolites(alte red energy homeostasis biomarkers);MAPLC-3beta(aberrant proteostasis biomarker);cortisol,tumor necrosis factor-alpha(inflammation biomarkers);DNA methylation,miRNA(DNA/RNA defects biomarkers);acetylcholinesterase activity(synaptic and neuronal network dysfunction biomarkers);Raman spectra,proteome,and caffeine.Despite a few studies investigating biomarkers to rgeting molecular pathways different from alpha-synuclein in Parkinson's disease,these results should be replicated and observed in studies on larger cohorts,considering the potential role of these biomarkers in determining the molecular variance among Parkinson's disease subtypes.Although the need fo r standardization in sample collection and processing,salivary-based biomarkers studies have reported encouraging results,calling for large-scale longitudinal studies and multicentric assessments,given the great molecular potentials and the non-invasive accessibility of saliva.展开更多
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of t...Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive.Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease.Notably,several of these genes are linked to the synaptic vesicle recycling process,particularly the clathrinmediated endocytosis pathway.This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease,followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a"dying back"mechanism.Recently,several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized.These models faithfully recapitulate certain Parkinson's disease-like features at the animal,circuit,and cellular levels,and exhibit defects in synaptic membrane trafficking,further supporting the findings from human genetics and clinical studies.In this review,we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins:auxilin(DNAJC6/PARK19)and synaptojanin 1(SYNJ1/PARK20).The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect.Subsequently,we will delve into the involvement of several clathrin-mediated endocytosis-related proteins(GAK,endophilin A1,SAC2/INPP5 F,synaptotagmin-11),identified as Parkinson's disease risk factors through genome-wide association studies,in Parkinson's disease pathogenesis.We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins(alpha-synuclein(PARK1/4),Parkin(PARK2),and LRRK2(PARK8))in synaptic endocytic trafficking.Additionally,we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways,particularly autophagy.Given that synaptic dysfunction is considered as an early event in Parkinson's disease,a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel to rgets for early diagnosis and the development of interventional therapies for Parkinson's disease.Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.展开更多
Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidati...Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.展开更多
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency i...The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore,bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico–striato–pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease,particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremordominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia–thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity,and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.展开更多
[Objectives]To explore the mechanism of action of gastrodin in the treatment of Parkinson's disease(PD)by employing network pharmacology technology,and to provide a scientific theoretical basis for the rational cl...[Objectives]To explore the mechanism of action of gastrodin in the treatment of Parkinson's disease(PD)by employing network pharmacology technology,and to provide a scientific theoretical basis for the rational clinical application of gastrodin.[Methods]The target of gastrodin was identified through a search of the SwissTargetPrediction database.The keyword"Parkinson Disease"was employed to identify the pertinent targets of PD in the GeneCards and OMIM databases.The relationship between gastrodin and PD was elucidated,and a Veen map was constructed to identify the genes that were common to both.A total of 52 common drug targets associated with PD as identified in the Wayne chart were imported into the String database(https://string-db.org/)for protein-protein interaction prediction.Subsequently,Cytoscape 3.9.1 software was employed to construct a"drug-target"network.The potential targets of gastrodin in the treatment of PD were then imported into the DAVID database,where GO analysis and KEGG enrichment results were obtained.[Results]A total of 22 core targets and 53 related pathways of gastrodin were identified as potentially beneficial for the treatment of PD.[Conclusions]Gastrodin may be a potential therapeutic agent for the treatment of PD by modulating the biological process of apoptosis,affecting the relevant pathways such as the IL-17 signaling pathway and the TNF signaling pathway,and acting on GAPDH,EGFR,CASP3,MMP9 and other targets.展开更多
An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease prog...An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.展开更多
Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucia...Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucial mitochondrial protein,has been reported to cause Parkinson's disease.FIFO-ATPase participates in the synthesis of cellular adenosine triphosphate(ATP)and plays a central role in mitochondrial energy metabolism.However,the specific roles of wild-type(WT)CHCHD2 and T611-mutant CHCHD2 in regulating F1FO-ATPase activity in Parkinson's disease,as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1FO-ATPase activity,remain unclea r.Therefore,in this study,we expressed WT CHCHD2 and T61l-mutant CHCHD2 in an MPP^(+)-induced SH-SY5Y cell model of PD.We found that CHCHD2 protected mitochondria from developing MPP^(+)-induced dysfunction.Under normal conditions,ove rexpression of WT CHCHD2 promoted F1FO-ATPase assembly,while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1FO-ATPase assembly.In addition,mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1FO-ATPase.Three weeks after transfection with AAV-CHCHD2 T61I,we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model.These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.展开更多
In this study,a systematic review was conducted on the experimental study as well as the clinical application of Tianma(Gastrodia elata Blume),a traditional Chinese medicine,in the prevention and treatment of Parkinso...In this study,a systematic review was conducted on the experimental study as well as the clinical application of Tianma(Gastrodia elata Blume),a traditional Chinese medicine,in the prevention and treatment of Parkinson's disease(PD).On this basis,a summary and outlook were made,so as to provide ideas and theoretical basis for the study,development and utilization of Tianma PD field.展开更多
As an active ingredient extracted from Salvia miltiorrhiza,the neuroprotective effects of salvianolic acid B in Parkinson's disease include antioxidation,improvement of mitochondrial function,modulation of neuroin...As an active ingredient extracted from Salvia miltiorrhiza,the neuroprotective effects of salvianolic acid B in Parkinson's disease include antioxidation,improvement of mitochondrial function,modulation of neuroinflammation,inhibition of apoptosis,promotion of neuronal differentiation and proliferation,and influence on intestinal flora.As an adjuvant drug,salbutamol B can be used in combination with conventional therapeutic drugs to enhance the efficacy and minimize the side effects,which provides a method and basis for the early diagnosis and treatment of Parkinson's disease in clinical practice.展开更多
This critical review of the literature shows that there is a close link between the microbiome,the gut,and the brain in Parkinson's disease.The vagus nerve,the main component of the parasympathetic nervous system,...This critical review of the literature shows that there is a close link between the microbiome,the gut,and the brain in Parkinson's disease.The vagus nerve,the main component of the parasympathetic nervous system,is involved in the regulation of immune response,digestion,heart rate,and control of mood.It can detect microbiota metabolites through its afferents,transferring this gut information to the central nervous system.Preclinical and clinical studies have shown the important role played by the gut microbiome and gut-related factors in disease development and progression,as well as treatment responses.These findings suggest that the gut microbiome may be a valuable target for new therapeutic strategies for Parkinson's disease.More studies are needed to better understand the underlying biology and how this axis can be modulated for the patient's benefit.展开更多
Use of glucagon-like peptide-1 receptor agonist or dipeptidyl peptidase 4 inhibitor has been shown to lower the incidence of Parkinson's disease in patients with diabetes mellitus.Therefore,using these two treatme...Use of glucagon-like peptide-1 receptor agonist or dipeptidyl peptidase 4 inhibitor has been shown to lower the incidence of Parkinson's disease in patients with diabetes mellitus.Therefore,using these two treatments may help treat Parkinson's disease.To further investigate the mechanisms of action of these two compounds,we established a model of Parkinson's disease by treating mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and then subcutaneously injected them with the glucagon-like peptide-1 receptor agonist exendin-4 or the dipeptidyl peptidase 4 inhibitor linagliptin.We found that both exendin-4 and linagliptin reversed motor dysfunction,glial activation,and dopaminergic neuronal death in this model.In addition,both exendin-4 and linagliptin induced microglial polarization to the anti-inflammatory M2 phenotype and reduced pro-inflammatory cytokine secretion.Moreover,in vitro experiments showed that treatment with exendin-4 and linagliptin inhibited activation of the nucleotide-binding oligomerization domain-and leucine-rich-repeat-and pyrin-domaincontaining 3/caspase-1/interleukin-1βpathway and subsequent pyroptosis by decreasing the production of reactive oxygen species.These findings suggest that exendin-4 and linagliptin exert neuroprotective effects by attenuating neuroinflammation through regulation of microglial polarization and the nucleotidebinding oligomerization domain-and leucine-rich-repeat-and pyrin-domain-containing 3/caspase-1/interleukin-1βpathway in a mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Therefore,these two drugs may serve as novel anti-inflammatory treatments for Parkinson's disease.展开更多
It is necessary to explore potent therapeutic agents via regulating gut microbiota and metabolism to combat Parkinson's disease(PD).Dioscin,a bioactive steroidal saponin,shows various activities.However,its effect...It is necessary to explore potent therapeutic agents via regulating gut microbiota and metabolism to combat Parkinson's disease(PD).Dioscin,a bioactive steroidal saponin,shows various activities.However,its effects and mechanisms against PD are limited.In this study,dioscin dramatically alleviated neuroinflammation and oxidative stress,and restored the disorders of mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP).16 S rDNA sequencing assay demonstrated that dioscin reversed MPTP-induced gut dysbiosis to decrease Firmicutes-to-Bacteroidetes ratio and the abundances of Enterococcus,Streptococcus,Bacteroides and Lactobacillus genera,which further inhibited bile salt hydrolase(BSH)activity and blocked bile acid(BA)deconjugation.Fecal microbiome transplantation test showed that the anti-PD effect of dioscin was gut microbiota-dependent.In addition,non-targeted fecal metabolomics assays revealed many differential metabolites in adjusting steroid biosynthesis and primary bile acid biosynthesis.Moreover,targeted bile acid metabolomics assay indicated that dioscin increased the levels of ursodeoxycholic acid,tauroursodeoxycholic acid,taurodeoxycholic acid and bmuricholic acid in feces and serum.In addition,ursodeoxycholic acid administration markedly improved the protective effects of dioscin against PD in mice.Mechanistic test indicated that dioscin significantly up-regulated the levels of takeda G protein-coupled receptor 5(TGR5),glucagon-like peptide-1 receptor(GLP-1R),GLP-1,superoxide dismutase(SOD),and down-regulated NADPH oxidases 2(NOX2)and nuclear factor-kappaB(NF-kB)levels.Our data indicated that dioscin ameliorated PD phenotype by restoring gut dysbiosis and regulating bile acid-mediated oxidative stress and neuroinflammation via targeting GLP-1 signal in MPTP-induced PD mice,suggesting that the compound should be considered as a prebiotic agent to treat PD in the future.展开更多
AIM: To observe the changes in the thickness of peripapillary retinal nerve fiber layer(p RNFL) and peripapillary vessel density(pVD) in patients with different stages of Parkinson's disease(PD).METHODS: Totally 4...AIM: To observe the changes in the thickness of peripapillary retinal nerve fiber layer(p RNFL) and peripapillary vessel density(pVD) in patients with different stages of Parkinson's disease(PD).METHODS: Totally 47 patients(47 eyes) with primary PD were divided into the mild group and the moderateto-severe group according to Hoehn & Yahr(H&Y) stage. Among them, there were 27 cases(27 eyes) in mild group and 20 cases(20 eyes) in moderate-to-severe group. And 20 cases(20 eyes) who were included in the control group were healthy people who came to our hospital for health screening at the same time. All participants underwent optical coherence tomography angiography(OCTA) examinations. The pRNFL thickness, total vessel density(tVD) and capillary vessel density(cVD) of the optic disc in average, superior half, inferior half, superior nasal(SN), nasal superior(NS), nasal inferior(NI), inferior nasal(IN), inferior temporal(IT), temporal inferior(TI), temporal superior(TS), and superior temporal(ST) were measured. One-way ANOVA was used to compare the differences of optic disc parameters among the three groups, and Pearson and Spearman correlations were used to analyze the correlation between pRNFL, pVD and the disease duration, H&Y stage and UPDRS-Ⅲ score in patients with PD, respectively.RESULTS: There were significant differences in p RNFL thickness in average, superior half, inferior half, SN, NS, IN, IT and ST quadrants among the three groups(P<0.05). In PD group, the pRNFL thickness in average, superior half, inferior half, NS and IT quadrants were negatively correlated with H&Y stage and UPDRS-Ⅲ score, respectively(P<0.05). There were statistically significant differences in the cVD of whole image, inferior half, NI and TS quadrants, the tVD of the whole image, inferior half, and peripapillary among the three groups(P<0.05). In PD group, the tVD of whole image and the c VD of NI and TS quadrants were negatively correlated with the H&Y stage, respectively(P<0.05);the cVD of TS quadrant was negatively correlated with UPDRS-Ⅲ score(P<0.05).CONCLUSION: The thickness of pRNFL in PD patients is significantly decreased, and it is negatively correlated with H&Y stage and UPDRS-Ⅲ score. With the increase of the severity of the disease, the pVD parameters in PD patients increase at first in the mild group, and then decrease in the moderate-to-severe group, and negatively correlate with H&Y stage and UPDRS-Ⅲ score.展开更多
The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating m...The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca~(2+) influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.展开更多
Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Review...Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.展开更多
Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin...Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.展开更多
Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced ...Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications.展开更多
Peroxynitrite(ONOO^(-))contributes to oxidative stress and neurodegeneration in Parkinson's disease(PD).Developing a peroxynitrite probe would enable in situ visualization of the overwhelming ONOO^(-)flux and unde...Peroxynitrite(ONOO^(-))contributes to oxidative stress and neurodegeneration in Parkinson's disease(PD).Developing a peroxynitrite probe would enable in situ visualization of the overwhelming ONOO^(-)flux and understanding of the ONOO^(-)stress-induced neuropathology of PD.Herein,a novelα-ketoamide-based fluorogenic probe(DFlu)was designed for ONOO^(-)monitoring in multiple PD models.The results demonstrated that DFlu exhibits a fluorescence turn-on response to ONOO^(-)with high specificity and sensitivity.The efficacy of DFlu for intracellular ONOO^(-)imaging was demonstrated systematically.The results showed that DFlu can successfully visualize endogenous and exogenous ONOO^(-)in cells derived from chemical and biochemical routes.More importantly,the two-photon excitation ability of DFlu has been well demonstrated by monitoring exogenous/endogenous ONOO^(-)production and scavenging in live zebraflsh PD models.This work provides a reliable and promisingα-ketoamide-based optical tool for identifying variations of ONOO^(-)in PD models.展开更多
By controlling the proper folding of proteins imported into mitochondria and ensuring crosstalk between the reticulum and mitochondria to modulate intra cellular calcium fluxes.Mortalin is a chaperone protein that pla...By controlling the proper folding of proteins imported into mitochondria and ensuring crosstalk between the reticulum and mitochondria to modulate intra cellular calcium fluxes.Mortalin is a chaperone protein that plays crucial roles in neuronal homeostasis and activity.Howeve r,its expression and stability are strongly modified in response to cellular stresses,in particular upon alte red oxidative conditions during neurodegeneration.Here,we report and discuss the abundant literature that has highlighted its contribution to the pathophysiology of Parkinson's disease,as well as its therapeutic and prognostic potential in this still incurable pathology.展开更多
文摘This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease,encompassing diverse components such as the gut microbiota,immune system,metabolism,and neural pathways.The gut microbiome,profoundly influenced by dietary factors,emerges as a key player.Nutrition during the first 1000 days of life shapes the gut microbiota composition,influencing immune responses and impacting both child development and adult health.High-fat,high-sugar diets can disrupt this delicate balance,contributing to inflammation and immune dysfunction.Exploring nutritional strategies,the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk.Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders.Beyond nutrition,emerging research uncovers potential interactions between steroid hormones,nutrition,and Parkinson's disease.Progesterone,with its anti-inflammatory properties and presence in the nervous system,offers a novel option for Parkinson's disease therapy.Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects.The review addresses the hypothesis thatα-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve.Gastrointestinal symptoms preceding motor symptoms support this hypothesis.Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances,emphasizing the potential of microbiota-based interventions.In summary,this review uncovers the complex web of interactions between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the gut-brain axis framework.Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.
文摘The search fo r reliable and easily accessible biomarkers in Parkinson's disease is receiving a growing emphasis,to detect neurodegeneration from the prodromal phase and to enforce disease-modifying therapies.Despite the need for non-invasively accessible biomarke rs,the majo rity of the studies have pointed to cerebrospinal fluid or peripheral biopsies biomarkers,which require invasive collection procedures.Saliva represents an easily accessible biofluid and an incredibly wide source of molecular biomarkers.In the present study,after presenting the morphological and biological bases for looking at saliva in the search of biomarkers for Parkinson's disease,we systematically reviewed the results achieved so far in the saliva of different cohorts of Parkinson's disease patients.A comprehensive literature search on PubMed and SCOPUS led to the discovery of 289articles.After screening and exclusion,34 relevant articles were derived fo r systematic review.Alpha-synuclein,the histopathological hallmark of Parkinson's disease,has been the most investigated Parkinson's disease biomarker in saliva,with oligomeric alphasynuclein consistently found increased in Parkinson's disease patients in comparison to healthy controls,while conflicting results have been reported regarding the levels of total alpha-synuclein and phosphorylated alpha-synuclein,and few studies described an increased oligomeric alpha-synuclein/total alpha-synuclein ratio in Parkinson's disease.Beyond alpha-synuclein,other biomarkers to rgeting diffe rent molecular pathways have been explored in the saliva of Parkinson's disease patients:total tau,phosphorylated tau,amyloid-β1-42(pathological protein aggregation biomarkers);DJ-1,heme-oxygenase-l,metabolites(alte red energy homeostasis biomarkers);MAPLC-3beta(aberrant proteostasis biomarker);cortisol,tumor necrosis factor-alpha(inflammation biomarkers);DNA methylation,miRNA(DNA/RNA defects biomarkers);acetylcholinesterase activity(synaptic and neuronal network dysfunction biomarkers);Raman spectra,proteome,and caffeine.Despite a few studies investigating biomarkers to rgeting molecular pathways different from alpha-synuclein in Parkinson's disease,these results should be replicated and observed in studies on larger cohorts,considering the potential role of these biomarkers in determining the molecular variance among Parkinson's disease subtypes.Although the need fo r standardization in sample collection and processing,salivary-based biomarkers studies have reported encouraging results,calling for large-scale longitudinal studies and multicentric assessments,given the great molecular potentials and the non-invasive accessibility of saliva.
文摘Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive.Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease.Notably,several of these genes are linked to the synaptic vesicle recycling process,particularly the clathrinmediated endocytosis pathway.This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease,followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a"dying back"mechanism.Recently,several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized.These models faithfully recapitulate certain Parkinson's disease-like features at the animal,circuit,and cellular levels,and exhibit defects in synaptic membrane trafficking,further supporting the findings from human genetics and clinical studies.In this review,we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins:auxilin(DNAJC6/PARK19)and synaptojanin 1(SYNJ1/PARK20).The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect.Subsequently,we will delve into the involvement of several clathrin-mediated endocytosis-related proteins(GAK,endophilin A1,SAC2/INPP5 F,synaptotagmin-11),identified as Parkinson's disease risk factors through genome-wide association studies,in Parkinson's disease pathogenesis.We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins(alpha-synuclein(PARK1/4),Parkin(PARK2),and LRRK2(PARK8))in synaptic endocytic trafficking.Additionally,we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways,particularly autophagy.Given that synaptic dysfunction is considered as an early event in Parkinson's disease,a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel to rgets for early diagnosis and the development of interventional therapies for Parkinson's disease.Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.
基金supported by the National Natural Science Foundation of China,Nos.82271444(to JP),82271268(to BZ),and 82001346(to YL)the National Key Research and Development Program of China,No.2022YFE0210100(to BZ)。
文摘Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.
基金supported by the National Natural Science Foundation of China,No.31771143 (to QZ)Shanghai Municipal Science and Technology Major Project,ZJ Lab+1 种基金Shanghai Center for Brain Science and Brain-Inspired Technology,No.2018SHZDZX01 (to LC)Shanghai Zhou Liangfu Medical Development Foundation “Brain Science and Brain Diseases Youth Innovation Program”(to ZQ)。
文摘The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore,bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico–striato–pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease,particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremordominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia–thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity,and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.
基金National Natural Science Foundation of China(81660671)Science and Technology Plan Project of Science and Technology Department of Yunnan Province(202101AZ070001-172)+1 种基金Key Laboratory of Formulation Granules of Yunnan Province(202105AG070014)National Administration of Traditional Chinese Medicine High-level Key Discipline Construction Project‘Dai Pharmacy’(zyyzdxk-2023192).
文摘[Objectives]To explore the mechanism of action of gastrodin in the treatment of Parkinson's disease(PD)by employing network pharmacology technology,and to provide a scientific theoretical basis for the rational clinical application of gastrodin.[Methods]The target of gastrodin was identified through a search of the SwissTargetPrediction database.The keyword"Parkinson Disease"was employed to identify the pertinent targets of PD in the GeneCards and OMIM databases.The relationship between gastrodin and PD was elucidated,and a Veen map was constructed to identify the genes that were common to both.A total of 52 common drug targets associated with PD as identified in the Wayne chart were imported into the String database(https://string-db.org/)for protein-protein interaction prediction.Subsequently,Cytoscape 3.9.1 software was employed to construct a"drug-target"network.The potential targets of gastrodin in the treatment of PD were then imported into the DAVID database,where GO analysis and KEGG enrichment results were obtained.[Results]A total of 22 core targets and 53 related pathways of gastrodin were identified as potentially beneficial for the treatment of PD.[Conclusions]Gastrodin may be a potential therapeutic agent for the treatment of PD by modulating the biological process of apoptosis,affecting the relevant pathways such as the IL-17 signaling pathway and the TNF signaling pathway,and acting on GAPDH,EGFR,CASP3,MMP9 and other targets.
基金supported by a grant from Ministry of Science,Technological Development and Innovation,Serbia,No.451-03-68/2022-14/200178(to NN)University of Defence,No.MFVMA/02/22-24(to MN)。
文摘An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.
基金supported by the National Natural Science Foundation of China(Youth Program),No.81901282(to XC)the National Natural Science Foundation of China,Nos.81401416(to PX),81870992(to PX),81870856(to XC and MZ)+3 种基金Guangdong Basic and Applied Basic Research Foundation the Science Foundation,No.2019A1515011189(to XC)Central Government Guiding Local Science and Technology Development Projects,No.ZYYD2022C17(to PX)Key Project of Guangzhou Health Commission,No.2019-ZD-09(to PX)Science and Technology Planning Project of Guangzhou,Nos.202102020029(to XC),202102010010(to PX)。
文摘Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucial mitochondrial protein,has been reported to cause Parkinson's disease.FIFO-ATPase participates in the synthesis of cellular adenosine triphosphate(ATP)and plays a central role in mitochondrial energy metabolism.However,the specific roles of wild-type(WT)CHCHD2 and T611-mutant CHCHD2 in regulating F1FO-ATPase activity in Parkinson's disease,as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1FO-ATPase activity,remain unclea r.Therefore,in this study,we expressed WT CHCHD2 and T61l-mutant CHCHD2 in an MPP^(+)-induced SH-SY5Y cell model of PD.We found that CHCHD2 protected mitochondria from developing MPP^(+)-induced dysfunction.Under normal conditions,ove rexpression of WT CHCHD2 promoted F1FO-ATPase assembly,while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1FO-ATPase assembly.In addition,mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1FO-ATPase.Three weeks after transfection with AAV-CHCHD2 T61I,we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model.These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.
基金National Natural Science Foundation of China(81660671)Science and technology plan project of Science and Technology Department of Yunnan Province(202101AZ070001-172)+1 种基金Key Laboratory of Formulation Granules of Yunnan Province(202105AG070014)National Administration of Traditional Chinese Medicine High-level Key Discipline Construction Project‘Dai Pharmacy’(zyyzdxk-2023192).
文摘In this study,a systematic review was conducted on the experimental study as well as the clinical application of Tianma(Gastrodia elata Blume),a traditional Chinese medicine,in the prevention and treatment of Parkinson's disease(PD).On this basis,a summary and outlook were made,so as to provide ideas and theoretical basis for the study,development and utilization of Tianma PD field.
基金Research on the Neuroprotective Mechanism of Salvianolic Acid B on Parkinson's DiseaseFunded Project of Gansu Province Health Industry Scientific Research Program(GSWSKY2018-43)+3 种基金Mechanism Research on the Regulation of Antioxidant Dysregulation in Parkinson's Disease Model by Salvianolic Acid B through Nrf2-ARE Signaling PathwayHospital Graduate Student Supervisor Special Project(Hospital Health[2022]yxky011)Mechanism and Clinical Efficacy Study on Treatment of Parkinson's Disease by Exenatide Combined with Deep Brain Electrical StimulationScience and Technology Plan Project of Lanzhou Science and Technology Bureau(2023-ZD-167).
文摘As an active ingredient extracted from Salvia miltiorrhiza,the neuroprotective effects of salvianolic acid B in Parkinson's disease include antioxidation,improvement of mitochondrial function,modulation of neuroinflammation,inhibition of apoptosis,promotion of neuronal differentiation and proliferation,and influence on intestinal flora.As an adjuvant drug,salbutamol B can be used in combination with conventional therapeutic drugs to enhance the efficacy and minimize the side effects,which provides a method and basis for the early diagnosis and treatment of Parkinson's disease in clinical practice.
基金Medical School of the Christus University Center(UNICHRISTUS)Federal University of Ceará(UFC)Fundacao de AmparoàPesquisa do Estado de S?o Paulo(FAPESP,grants 2021/06473-4)(to JCCS)。
文摘This critical review of the literature shows that there is a close link between the microbiome,the gut,and the brain in Parkinson's disease.The vagus nerve,the main component of the parasympathetic nervous system,is involved in the regulation of immune response,digestion,heart rate,and control of mood.It can detect microbiota metabolites through its afferents,transferring this gut information to the central nervous system.Preclinical and clinical studies have shown the important role played by the gut microbiome and gut-related factors in disease development and progression,as well as treatment responses.These findings suggest that the gut microbiome may be a valuable target for new therapeutic strategies for Parkinson's disease.More studies are needed to better understand the underlying biology and how this axis can be modulated for the patient's benefit.
基金supported by the National Natural Science Foundation of China,Nos.81771271(to JF),31800898(to WL),81430025(to JYL),and U1801681(to JYL)Key Research and Development Program of Liaoning Province,No.2020JH2/10300047(to JF)+1 种基金the Key Field Research Development Program of Guangdong Province,No.2018B030337001(to JYL)the Outstanding Scientific Fund of Shengjing Hospital,No.M0475(to JF)。
文摘Use of glucagon-like peptide-1 receptor agonist or dipeptidyl peptidase 4 inhibitor has been shown to lower the incidence of Parkinson's disease in patients with diabetes mellitus.Therefore,using these two treatments may help treat Parkinson's disease.To further investigate the mechanisms of action of these two compounds,we established a model of Parkinson's disease by treating mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and then subcutaneously injected them with the glucagon-like peptide-1 receptor agonist exendin-4 or the dipeptidyl peptidase 4 inhibitor linagliptin.We found that both exendin-4 and linagliptin reversed motor dysfunction,glial activation,and dopaminergic neuronal death in this model.In addition,both exendin-4 and linagliptin induced microglial polarization to the anti-inflammatory M2 phenotype and reduced pro-inflammatory cytokine secretion.Moreover,in vitro experiments showed that treatment with exendin-4 and linagliptin inhibited activation of the nucleotide-binding oligomerization domain-and leucine-rich-repeat-and pyrin-domaincontaining 3/caspase-1/interleukin-1βpathway and subsequent pyroptosis by decreasing the production of reactive oxygen species.These findings suggest that exendin-4 and linagliptin exert neuroprotective effects by attenuating neuroinflammation through regulation of microglial polarization and the nucleotidebinding oligomerization domain-and leucine-rich-repeat-and pyrin-domain-containing 3/caspase-1/interleukin-1βpathway in a mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Therefore,these two drugs may serve as novel anti-inflammatory treatments for Parkinson's disease.
基金funding from the Spring City Plan:The High-Level Talent Promotion and Training Project of Kunming and the Independent Research Fund of Yunnan Characteristic Plant Extraction Laboratory(Grant No.:2022YKZY001).
文摘It is necessary to explore potent therapeutic agents via regulating gut microbiota and metabolism to combat Parkinson's disease(PD).Dioscin,a bioactive steroidal saponin,shows various activities.However,its effects and mechanisms against PD are limited.In this study,dioscin dramatically alleviated neuroinflammation and oxidative stress,and restored the disorders of mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP).16 S rDNA sequencing assay demonstrated that dioscin reversed MPTP-induced gut dysbiosis to decrease Firmicutes-to-Bacteroidetes ratio and the abundances of Enterococcus,Streptococcus,Bacteroides and Lactobacillus genera,which further inhibited bile salt hydrolase(BSH)activity and blocked bile acid(BA)deconjugation.Fecal microbiome transplantation test showed that the anti-PD effect of dioscin was gut microbiota-dependent.In addition,non-targeted fecal metabolomics assays revealed many differential metabolites in adjusting steroid biosynthesis and primary bile acid biosynthesis.Moreover,targeted bile acid metabolomics assay indicated that dioscin increased the levels of ursodeoxycholic acid,tauroursodeoxycholic acid,taurodeoxycholic acid and bmuricholic acid in feces and serum.In addition,ursodeoxycholic acid administration markedly improved the protective effects of dioscin against PD in mice.Mechanistic test indicated that dioscin significantly up-regulated the levels of takeda G protein-coupled receptor 5(TGR5),glucagon-like peptide-1 receptor(GLP-1R),GLP-1,superoxide dismutase(SOD),and down-regulated NADPH oxidases 2(NOX2)and nuclear factor-kappaB(NF-kB)levels.Our data indicated that dioscin ameliorated PD phenotype by restoring gut dysbiosis and regulating bile acid-mediated oxidative stress and neuroinflammation via targeting GLP-1 signal in MPTP-induced PD mice,suggesting that the compound should be considered as a prebiotic agent to treat PD in the future.
文摘AIM: To observe the changes in the thickness of peripapillary retinal nerve fiber layer(p RNFL) and peripapillary vessel density(pVD) in patients with different stages of Parkinson's disease(PD).METHODS: Totally 47 patients(47 eyes) with primary PD were divided into the mild group and the moderateto-severe group according to Hoehn & Yahr(H&Y) stage. Among them, there were 27 cases(27 eyes) in mild group and 20 cases(20 eyes) in moderate-to-severe group. And 20 cases(20 eyes) who were included in the control group were healthy people who came to our hospital for health screening at the same time. All participants underwent optical coherence tomography angiography(OCTA) examinations. The pRNFL thickness, total vessel density(tVD) and capillary vessel density(cVD) of the optic disc in average, superior half, inferior half, superior nasal(SN), nasal superior(NS), nasal inferior(NI), inferior nasal(IN), inferior temporal(IT), temporal inferior(TI), temporal superior(TS), and superior temporal(ST) were measured. One-way ANOVA was used to compare the differences of optic disc parameters among the three groups, and Pearson and Spearman correlations were used to analyze the correlation between pRNFL, pVD and the disease duration, H&Y stage and UPDRS-Ⅲ score in patients with PD, respectively.RESULTS: There were significant differences in p RNFL thickness in average, superior half, inferior half, SN, NS, IN, IT and ST quadrants among the three groups(P<0.05). In PD group, the pRNFL thickness in average, superior half, inferior half, NS and IT quadrants were negatively correlated with H&Y stage and UPDRS-Ⅲ score, respectively(P<0.05). There were statistically significant differences in the cVD of whole image, inferior half, NI and TS quadrants, the tVD of the whole image, inferior half, and peripapillary among the three groups(P<0.05). In PD group, the tVD of whole image and the c VD of NI and TS quadrants were negatively correlated with the H&Y stage, respectively(P<0.05);the cVD of TS quadrant was negatively correlated with UPDRS-Ⅲ score(P<0.05).CONCLUSION: The thickness of pRNFL in PD patients is significantly decreased, and it is negatively correlated with H&Y stage and UPDRS-Ⅲ score. With the increase of the severity of the disease, the pVD parameters in PD patients increase at first in the mild group, and then decrease in the moderate-to-severe group, and negatively correlate with H&Y stage and UPDRS-Ⅲ score.
基金funded by Coordination for the Improvement of Higher Education Personnel (CAPES,Brazil-Finance Code 001,to LRB)the S?o Paulo Research Foundation(FAPESP,Brazil,project#2018/07366-4)+1 种基金The National Council for Scientific and Technological Development (CNPq,Brazil,project#303006/2018-8,to LRB)a PhD fellowship from FAPESP under Grant Agreement No 2020/02109-3。
文摘The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca~(2+) influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.
基金supported partly by the National Natural Science Foundation of China,Nos.32161143021 and 81271410the Natural Science Foundation of Henan Province of China,No.182300410313(all to JW)。
文摘Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
基金supported by the National Natural Science Foundation of China,Nos.82230042 and 81930029(to ZY),U2004201(to FG and RYP)the China Postdoctoral Science Foundation,No.2020M683748(to RYP)。
文摘Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.
文摘Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications.
基金supported by the National Natural Science Foundation of China(22077101)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2020WNLOKF023)+4 种基金Natural Science Foundation of Shaanxi Province(2022JM-130)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(2020GXLH-Z-008,2020GXLH-Z-021,2020GXLH-Z-023)the China Postdoctoral Science Foundation(2022M711595,2022M722595)Postdoctoral Research Funding Schemes of Jiangsu Province(2021K036A)The Natural Science Foundation of Ningbo(202003N4049,202003N4065).
文摘Peroxynitrite(ONOO^(-))contributes to oxidative stress and neurodegeneration in Parkinson's disease(PD).Developing a peroxynitrite probe would enable in situ visualization of the overwhelming ONOO^(-)flux and understanding of the ONOO^(-)stress-induced neuropathology of PD.Herein,a novelα-ketoamide-based fluorogenic probe(DFlu)was designed for ONOO^(-)monitoring in multiple PD models.The results demonstrated that DFlu exhibits a fluorescence turn-on response to ONOO^(-)with high specificity and sensitivity.The efficacy of DFlu for intracellular ONOO^(-)imaging was demonstrated systematically.The results showed that DFlu can successfully visualize endogenous and exogenous ONOO^(-)in cells derived from chemical and biochemical routes.More importantly,the two-photon excitation ability of DFlu has been well demonstrated by monitoring exogenous/endogenous ONOO^(-)production and scavenging in live zebraflsh PD models.This work provides a reliable and promisingα-ketoamide-based optical tool for identifying variations of ONOO^(-)in PD models.
文摘By controlling the proper folding of proteins imported into mitochondria and ensuring crosstalk between the reticulum and mitochondria to modulate intra cellular calcium fluxes.Mortalin is a chaperone protein that plays crucial roles in neuronal homeostasis and activity.Howeve r,its expression and stability are strongly modified in response to cellular stresses,in particular upon alte red oxidative conditions during neurodegeneration.Here,we report and discuss the abundant literature that has highlighted its contribution to the pathophysiology of Parkinson's disease,as well as its therapeutic and prognostic potential in this still incurable pathology.