There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for...There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects.展开更多
Purpose-Parkinson’s disease(PD)is a well-known complex neurodegenerative disease.Typically,its identification is based on motor disorders,while the computer estimation of its main symptoms with computational machine ...Purpose-Parkinson’s disease(PD)is a well-known complex neurodegenerative disease.Typically,its identification is based on motor disorders,while the computer estimation of its main symptoms with computational machine learning(ML)has a high exposure which is supported by researches conducted.Nevertheless,ML approaches required first to refine their parameters and then to work with the best model generated.This process often requires an expert user to oversee the performance of the algorithm.Therefore,an attention is required towards new approaches for better forecasting accuracy.Design/methodology/approach-To provide an available identification model for Parkinson disease as an auxiliary function for clinicians,the authors suggest a new evolutionary classification model.The core of the prediction model is a fast learning network(FLN)optimized by a genetic algorithm(GA).To get a better subset of features and parameters,a new coding architecture is introduced to improve GA for obtaining an optimal FLN model.Findings-The proposed model is intensively evaluated through a series of experiments based on Speech and HandPD benchmark datasets.The very popular wrappers induction models such as support vector machine(SVM),K-nearest neighbors(KNN)have been tested in the same condition.The results support that the proposed model can achieve the best performances in terms of accuracy and g-mean.Originality/value-A novel efficient PD detectionmodel is proposed,which is called A-W-FLN.The A-W-FLN utilizes FLN as the base classifier;in order to take its higher generalization ability,and identification capability is alsoembedded to discover themost suitable featuremodel in the detection process.Moreover,the proposedmethod automatically optimizes the FLN’s architecture to a smaller number of hidden nodes and solid connecting weights.This helps the network to train on complex PD datasets with non-linear features and yields superior result.展开更多
文摘There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects.
文摘Purpose-Parkinson’s disease(PD)is a well-known complex neurodegenerative disease.Typically,its identification is based on motor disorders,while the computer estimation of its main symptoms with computational machine learning(ML)has a high exposure which is supported by researches conducted.Nevertheless,ML approaches required first to refine their parameters and then to work with the best model generated.This process often requires an expert user to oversee the performance of the algorithm.Therefore,an attention is required towards new approaches for better forecasting accuracy.Design/methodology/approach-To provide an available identification model for Parkinson disease as an auxiliary function for clinicians,the authors suggest a new evolutionary classification model.The core of the prediction model is a fast learning network(FLN)optimized by a genetic algorithm(GA).To get a better subset of features and parameters,a new coding architecture is introduced to improve GA for obtaining an optimal FLN model.Findings-The proposed model is intensively evaluated through a series of experiments based on Speech and HandPD benchmark datasets.The very popular wrappers induction models such as support vector machine(SVM),K-nearest neighbors(KNN)have been tested in the same condition.The results support that the proposed model can achieve the best performances in terms of accuracy and g-mean.Originality/value-A novel efficient PD detectionmodel is proposed,which is called A-W-FLN.The A-W-FLN utilizes FLN as the base classifier;in order to take its higher generalization ability,and identification capability is alsoembedded to discover themost suitable featuremodel in the detection process.Moreover,the proposedmethod automatically optimizes the FLN’s architecture to a smaller number of hidden nodes and solid connecting weights.This helps the network to train on complex PD datasets with non-linear features and yields superior result.