Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report...Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.展开更多
Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the m...Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin.展开更多
X-box-binding protein 1-transfected neural stem cells were transplanted into the right lateral ventricles of rats with rotenone-induced Parkinson's disease. The survival capacities and differentiation rates of cells ...X-box-binding protein 1-transfected neural stem cells were transplanted into the right lateral ventricles of rats with rotenone-induced Parkinson's disease. The survival capacities and differentiation rates of cells expressing the dopaminergic marker tyrosine hydroxylase were higher in X-box-binding protein 1-transfected neural stem cells compared to non-transfected cells. Moreover, dopamine and 3,4-dihydroxyphenylacetic acid levels in the substantia nigra were significantly increased, α-synuclein expression was decreased, and neurological behaviors were significantly ameliorated in rats following transplantation of X-box-binding protein 1-transfected neural stem cells. These results indicate that transplantation of X-box-binding protein 1-transfected neural stem cells can promote stem cell survival and differentiation into dopaminergic neurons, increase dopamine and 3,4-dihydroxyphenylacetic acid levels, reduce α-synuclein aggregation in the substantia nigra, and improve the symptoms of Parkinson's disease in rats.展开更多
To date there is no treatment able to stop or slow down the loss of dopaminergic neurons that characterizes Parkinson’s disease.It was recently observed in a rodent model of Alzheimer’s disease that the interaction ...To date there is no treatment able to stop or slow down the loss of dopaminergic neurons that characterizes Parkinson’s disease.It was recently observed in a rodent model of Alzheimer’s disease that the interaction between the α7 subtype of nicotinic acetylcholine receptor(α7-nAChR)and sigma-1 receptor(σ1-R)could exert neuroprotective effects through the modulation of neuroinflammation which is one of the key components of the pathophysiology of Parkinson’s disease.In this context,the aim of the present study was to assess the effects of the concomitant administration of N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-furo[2,3-c]pyridine-5-carboxamide(PHA)543613 as an α7-nAChR agonist and 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate(PRE)-084 as aσ1-R agonist in a well-characterized 6-hydroxydopamine rat model of Parkinson’s disease.The animals received either vehicle separately or the dual therapy PHA/PRE once a day until day 14 postlesion.Although no effect was noticed in the amphetamine-induced rotation test,our data has shown that the PHA/PRE treatment induced partial protection of the dopaminergic neurons(15-20%),assessed by the dopamine transporter density in the striatum and immunoreactive tyrosine hydroxylase in the substantia nigra.Furthermore,this dual therapy reduced the degree of glial activation consecutive to the 6-hydroxydopamine lesion,i.e,the 18 kDa translocation protein density and glial fibrillary acidic protein staining in the striatum,and the CD11b and glial fibrillary acidic protein staining in the substantia nigra.Hence,this study reports for the first time that concomitant activation of α7-nAChR andσ1-R can provide a partial recovery of the nigro-striatal dopaminergic neurons through the modulation of microglial activation.The study was approved by the Regional Ethics Committee(CEEA Val de Loire n°19)validated this protocol(Authorization N°00434.02)on May 15,2014.展开更多
Autosomal recessive mutations in the PARK7 gene,which encodes for the protein DJ-1,result in a loss of function and are a cause of familial Parkinson’s disease(PD),while increased wild-type DJ-1protein levels are a...Autosomal recessive mutations in the PARK7 gene,which encodes for the protein DJ-1,result in a loss of function and are a cause of familial Parkinson’s disease(PD),while increased wild-type DJ-1protein levels are associated with some forms of cancer.Several functions of DJ-1 have been described,with the greatest evidence indicating that DJ-1 is a redox-sensitive protein involved in the regulation of oxidative stress and cell survival.展开更多
Parkinson’s disease (PD) is a debilitating neurological disorder that affects <span>the aged population globally. This study aimed to explore how oral- and in</span>traperitoneal-rotenone-induced PD alter...Parkinson’s disease (PD) is a debilitating neurological disorder that affects <span>the aged population globally. This study aimed to explore how oral- and in</span>traperitoneal-rotenone-induced PD alters brain urea levels, histopathology, and key Parkinsonism<span>-related genes in the striatum. Hematoxylin and eosin staining was performed for histopathology assessment and real-time polymerase chain reaction was performed for gene expression. Rotenone 3 mg/kg body weight (Rot-3-ip) for 21 days and rotenone 50 mg/kg body weight (Rot-50-po) for 28 days significantly (p < 0.05) altered alpha-synuclein and tyrosine hydroxylase protein expression and <i>Snca</i>, <i>Becn</i>1 and <i>Prkaa</i>1 gene expression in the striatum. Lewy bodies were visible in both Rot-3-ip and Rot-50-po rat brains. There were </span><span>contrasting features in brain and liver histopathology between the oral and</span><span> intraperitoneal rotenone treatment groups. However, there was no significant (p < 0.05) difference in the brain urea levels between intraperitoneal and oral rotenone treatment groups. The propagation of PD through oral and intraperitoneal rotenone</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">can have different impacts on the pathological sequence of events based on the molecular approach.展开更多
Park 7 gene encodes a conserved protein called DJ-1 protein, which involves autophagy stress, but the mechanism is unclear. Therefore, it is necessary to explore the mechanism of DJ-1 regulation PC-12 autophagical str...Park 7 gene encodes a conserved protein called DJ-1 protein, which involves autophagy stress, but the mechanism is unclear. Therefore, it is necessary to explore the mechanism of DJ-1 regulation PC-12 autophagical stress. Using CRISPR/Cas9 technique to construct DJ-1 knockout PC-12 cell lines, we culture wild-type and DJ-1 knockout PC-12 cell lines, establish oxidative stress cell model by MPP+, and divide them into wild-type control group (WT), wild-type intervention group (WT + MPP+), DJ-1 knockout control group (KO) and DJ-1 knockout intervention group (KO + MPP+), and explore the role of DJ-1 in regulating neuronal autophagy stress by cell viability assay, immunofluorescence, confocal, western blotting and electron microscopy. The results show that the growth ability of DJ-1 knockout cells is inferior to that of normal cells, and DJ-1 knockout cells are more sensitive to oxidative stress and more vulnerable to damage than wild-type cells. Exposing to MPP+, DJ-1 proteins undergo oxidative responses at Cys-106 sites, while DJ-1 knockout PC-12 cells do not show similar responses. The wild-type PC-12 cells have the confocal in both anti-oxidant DJ-1 antibody and anti-C-Raf phosphorylation antibody. The activated DJ-1 induces the phosphorylation of C-Raf at Ser338 sites to activate directly C-Raf, and subsequently activates ERK1/2 signaling pathways to antagonize MPP+-induced neurotoxicity. Lack of DJ-1, oxidative stress can not promote C-Raf activation. Although the phosphorylation level of cell ERK is also increased, the increase of intranucleus pERK is not obvious. Wild type and DJ-1 knockout PC-12 cells can produce autophagical stress in the face of oxidative stress, but the proportion of autophagolysosomes produced in wild type PC-12 cells is larger than that in DJ-1 knockout cells. PD98059 can reduce autophagy stress in the state of oxidative stress in wild-type PC-12 cells, and the number of autophagolysosomes is similarly reduced, while sorafenib decreased slightly DJ-1 the autophagical stress, and the proportion of autophagolysosomes decreased more. Therefore, we can infer that activated DJ-1 directly phosphorylates C-Raf at Ser-338 sites, then activating C-Raf, subsequent activation of the MEK/ERK pathway. DJ-1 promotes autophagy maturation through the C-Raf/ERK pathway, thereby improving cell survival.展开更多
Iron plays a key role in Parkinson's disease (PD). Increased iron content of the substantia nigra (SN) has been found in PD patients, and divalent metal transporter 1 (DMT1) has been shown to be up-regulated in...Iron plays a key role in Parkinson's disease (PD). Increased iron content of the substantia nigra (SN) has been found in PD patients, and divalent metal transporter 1 (DMT1) has been shown to be up-regulated in the SN of both MPTP-induced PD models and PD patients. However, the mechanisms underlying DMT1 up-regulation are largely unknown. In the present study, we observed that in the SN of 6-hydroxydopamine (6-OHDA)-induced PD rats, DMT1 with the iron responsive element (IRE, DMTI+IRE), but not DMT1 without IRE (DMTI-IRE), was up- regulated, suggesting that increased DMTI+IRE expression might account for nigral iron accumulation in PD rats. This possibility was further assessed in an in vitro study using 6-OHDA-treated and DMTl+IRE-over-expressing MES23.5 cells. In 6-OHDA-treated MES23.5 cells, increased iron regulatory protein (IRP) 1 and IRP2 expression was observed, while silencing of IRPs dramatically diminished 6-OHDA-indueed DMTI+IRE up-regulation. Pre- treatment with N-acetyl-L-cysteine fully suppressed IRPs up-regulation by inhibition of 6-OHDA-indueed oxidative stress. Increased DMTI+IRE expression resulted in increased iron influx by MES23.5 cells. Our data provide direct evidence that DMTI+IRE up-regulation can account for IRE/IRP-dependent 6-OHDA-induced iron accumulation initiated by 6-OHDA-induced intracellular oxidative stress and that increased levels of intracellular iron result in ag- gravated oxidative stress. The results of this study provide novel evidence supporting the use of anti-oxidants in the treatment of PD, with the goal of inhibiting iron accumulation by regulation of DMT1 expression.展开更多
Parkinson's disease(PD) is the most common neurodegenerative movement disorder. Mutations in the DJ-1, including L166 P, are responsible for recessive earlyonset PD. Many lines of evidence have shown that L166 P is...Parkinson's disease(PD) is the most common neurodegenerative movement disorder. Mutations in the DJ-1, including L166 P, are responsible for recessive earlyonset PD. Many lines of evidence have shown that L166 P is not only a loss-of-function mutant, but also a proapoptotic-like protein that results in mitochondrial dysfunction. L166 P has been reported to be unstable and to mislocalize to mitochondria. However, the mechanisms underlying the instability of L166 P compared to wild-type DJ-1 remain largely unknown. Here, we showed that Omi/Htr A2, a mitochondrial serine protease that has also been linked to the pathogenesis of PD, contributed to L166 P instability. Omi directly interacted with and cleaved L166 P in mitochondria to decrease the L166 P level. However,Omi did not bind and cleave wild-type DJ-1. Moreover,Omi cleaved L166 P at both serine residues 3 and 121,while L166 P-induced cell death under H_2O_2 treatment was alleviated by over-expression of Omi. Our data reveal a bridge between DJ-1 and Omi, two PD-associated geneticfactors, which contributes to our understanding of the pathogenesis of PD.展开更多
This study investigated the effect and mechanism of cell cycle reentry induced by 6-hydrodopamine (6-OHDA) in PC12 cells. By using neural differentiated PC12 cells treated with 6-OHDA, the apoptosis model of dopamin...This study investigated the effect and mechanism of cell cycle reentry induced by 6-hydrodopamine (6-OHDA) in PC12 cells. By using neural differentiated PC12 cells treated with 6-OHDA, the apoptosis model of dopaminergic neurons was established. Cell viability was measured by MTT. Cell apoptosis and the distribution of cell cycle were assessed by flow cytometry. Western blot was used to detect the activation of extracellular regulator kinasel/2 (ERK1/2) pathway and the phosphorylation of retinoblastoma protein (RB). Our results showed that after PC12 cells were treated wtih 6-OHDA, the viability of PC12 cells was declined in a concentration-dependent manner. Flow cytornetry revealed that 6-OHDA could increase the apoptosis ratio of PC12 cells in a time-dependent manner. The percentage of ceils in G0/G1 phase of cell cycle was decreased and that in S phase and G2/M phase increased. Simultaneously, ERK1/2 pathway was activated and phosphorylated RB increased. It was concluded that 6-OHDA could induce cell cycle reentry of dopaminergic neurons through the activation of ERK1/2 pathway and RB phosphorylation. The aberrant cell cycle reentry contributes to the apoptosis of dopaminergic neurons.展开更多
Background:DJ-1 has been thought as a candidate biomarker for Parkinson’s disease(PD).It was found reduced in PD brains,CSF and saliva,although there were conflicting results.How DJ-1 expression may be regulated is n...Background:DJ-1 has been thought as a candidate biomarker for Parkinson’s disease(PD).It was found reduced in PD brains,CSF and saliva,although there were conflicting results.How DJ-1 expression may be regulated is not clear.Recently,blood-based DNA methylation represents a highly promising biomarker for PD by regulating the causative gene expression.Thus,in this study,we try to explore whether blood-based DNA methylation of DJ-1 could be used as a biomarker to differentiate PD patients from normal control(NC),and whether DNA methylation could regulate DJ-1 expression in a SH-SY5Y cell model.Methods:Forty PD patients and 40 NC were recruited in this study.DNA was extracted from peripheral blood leukocytes(PBLs).Methylation status of two CpG islands(CpG1 and CpG2)in promoter region of DJ-1 was explored by bisulfite specific PCR-based sequencing method.Methylation inhibitor 5-Aza-dC was used to treat SH-SY5Y cell line,DJ-1 level was detected in both mRNA and protein level.Results:CpG sites in these two CpG islands(CpG1 and CpG2)of DJ-1 were unmethylated in both PD and NC group.In SH-SY5Y cell model treated by methylation inhibitor,there was no significant change of DJ-1 expression in either mRNA level or protein level.Conclusions:Our results indicated that DNA methylation inhibitor didn’t alter DJ-1 gene expression in SH-SY5Y cell model,and DNA methylation of DJ-1 promoter region in PBLs level might not be an efficient biomarker for PD patients.展开更多
Whether direct manipulation of Parkinson’s disease(PD)risk genes in the adult monkey brain can elicit a Parkinsonian phenotype remains an unsolved issue.Here,we used an adeno-associated virus serotype 9(AAV9)-deliver...Whether direct manipulation of Parkinson’s disease(PD)risk genes in the adult monkey brain can elicit a Parkinsonian phenotype remains an unsolved issue.Here,we used an adeno-associated virus serotype 9(AAV9)-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigras(SNs)of two monkey groups:an old group and a middle-aged group.After the operation,the old group exhibited all the classic PD symptoms,including bradykinesia,tremor,and postural instability,accompanied by key pathological hallmarks of PD,such as severe nigral dopaminergic neuron loss(>64%)and evidentα-synuclein pathology in the gene-edited SN.In contrast,the phenotype of their middle-aged counterparts,which also showed clear PD symptoms and pathological hallmarks,were less severe.In addition to the higher final total PD scores and more severe pathological changes,the old group were also more susceptible to gene editing by showing a faster process of PD progression.These results suggested that both genetic and aging factors played important roles in the development of PD in the monkeys.Taken together,this system can effectively develop a large number of genetically-edited PD monkeys in a short time(6–10 months),and thus provides a practical transgenic monkey model for future PD studies.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82171429,81771384a grant from Wuxi Municipal Health Commission,No.1286010241190480(all to YS)。
文摘Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.
基金supported by the Key Science and Technology Research of Henan Province,No.222102310351(to JW)Luoyang 2022 Medical and Health Guiding Science and Technology Plan Project,No.2022057Y(to JY)Henan Medical Science and Technology Research Program Province-Ministry Co-sponsorship,No.SBGJ202002099(to JY)。
文摘Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin.
文摘X-box-binding protein 1-transfected neural stem cells were transplanted into the right lateral ventricles of rats with rotenone-induced Parkinson's disease. The survival capacities and differentiation rates of cells expressing the dopaminergic marker tyrosine hydroxylase were higher in X-box-binding protein 1-transfected neural stem cells compared to non-transfected cells. Moreover, dopamine and 3,4-dihydroxyphenylacetic acid levels in the substantia nigra were significantly increased, α-synuclein expression was decreased, and neurological behaviors were significantly ameliorated in rats following transplantation of X-box-binding protein 1-transfected neural stem cells. These results indicate that transplantation of X-box-binding protein 1-transfected neural stem cells can promote stem cell survival and differentiation into dopaminergic neurons, increase dopamine and 3,4-dihydroxyphenylacetic acid levels, reduce α-synuclein aggregation in the substantia nigra, and improve the symptoms of Parkinson's disease in rats.
基金supported by Inserm(to SV,LFF,CT,JV,SB,SS,SC)by the Labex IRON(ANR-11-LABX-18-01:to all authors).
文摘To date there is no treatment able to stop or slow down the loss of dopaminergic neurons that characterizes Parkinson’s disease.It was recently observed in a rodent model of Alzheimer’s disease that the interaction between the α7 subtype of nicotinic acetylcholine receptor(α7-nAChR)and sigma-1 receptor(σ1-R)could exert neuroprotective effects through the modulation of neuroinflammation which is one of the key components of the pathophysiology of Parkinson’s disease.In this context,the aim of the present study was to assess the effects of the concomitant administration of N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-furo[2,3-c]pyridine-5-carboxamide(PHA)543613 as an α7-nAChR agonist and 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate(PRE)-084 as aσ1-R agonist in a well-characterized 6-hydroxydopamine rat model of Parkinson’s disease.The animals received either vehicle separately or the dual therapy PHA/PRE once a day until day 14 postlesion.Although no effect was noticed in the amphetamine-induced rotation test,our data has shown that the PHA/PRE treatment induced partial protection of the dopaminergic neurons(15-20%),assessed by the dopamine transporter density in the striatum and immunoreactive tyrosine hydroxylase in the substantia nigra.Furthermore,this dual therapy reduced the degree of glial activation consecutive to the 6-hydroxydopamine lesion,i.e,the 18 kDa translocation protein density and glial fibrillary acidic protein staining in the striatum,and the CD11b and glial fibrillary acidic protein staining in the substantia nigra.Hence,this study reports for the first time that concomitant activation of α7-nAChR andσ1-R can provide a partial recovery of the nigro-striatal dopaminergic neurons through the modulation of microglial activation.The study was approved by the Regional Ethics Committee(CEEA Val de Loire n°19)validated this protocol(Authorization N°00434.02)on May 15,2014.
基金funded by a Medical Research Council(UK)Experimental Medicine grant[MR/M006646/1]
文摘Autosomal recessive mutations in the PARK7 gene,which encodes for the protein DJ-1,result in a loss of function and are a cause of familial Parkinson’s disease(PD),while increased wild-type DJ-1protein levels are associated with some forms of cancer.Several functions of DJ-1 have been described,with the greatest evidence indicating that DJ-1 is a redox-sensitive protein involved in the regulation of oxidative stress and cell survival.
文摘Parkinson’s disease (PD) is a debilitating neurological disorder that affects <span>the aged population globally. This study aimed to explore how oral- and in</span>traperitoneal-rotenone-induced PD alters brain urea levels, histopathology, and key Parkinsonism<span>-related genes in the striatum. Hematoxylin and eosin staining was performed for histopathology assessment and real-time polymerase chain reaction was performed for gene expression. Rotenone 3 mg/kg body weight (Rot-3-ip) for 21 days and rotenone 50 mg/kg body weight (Rot-50-po) for 28 days significantly (p < 0.05) altered alpha-synuclein and tyrosine hydroxylase protein expression and <i>Snca</i>, <i>Becn</i>1 and <i>Prkaa</i>1 gene expression in the striatum. Lewy bodies were visible in both Rot-3-ip and Rot-50-po rat brains. There were </span><span>contrasting features in brain and liver histopathology between the oral and</span><span> intraperitoneal rotenone treatment groups. However, there was no significant (p < 0.05) difference in the brain urea levels between intraperitoneal and oral rotenone treatment groups. The propagation of PD through oral and intraperitoneal rotenone</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">can have different impacts on the pathological sequence of events based on the molecular approach.
文摘Park 7 gene encodes a conserved protein called DJ-1 protein, which involves autophagy stress, but the mechanism is unclear. Therefore, it is necessary to explore the mechanism of DJ-1 regulation PC-12 autophagical stress. Using CRISPR/Cas9 technique to construct DJ-1 knockout PC-12 cell lines, we culture wild-type and DJ-1 knockout PC-12 cell lines, establish oxidative stress cell model by MPP+, and divide them into wild-type control group (WT), wild-type intervention group (WT + MPP+), DJ-1 knockout control group (KO) and DJ-1 knockout intervention group (KO + MPP+), and explore the role of DJ-1 in regulating neuronal autophagy stress by cell viability assay, immunofluorescence, confocal, western blotting and electron microscopy. The results show that the growth ability of DJ-1 knockout cells is inferior to that of normal cells, and DJ-1 knockout cells are more sensitive to oxidative stress and more vulnerable to damage than wild-type cells. Exposing to MPP+, DJ-1 proteins undergo oxidative responses at Cys-106 sites, while DJ-1 knockout PC-12 cells do not show similar responses. The wild-type PC-12 cells have the confocal in both anti-oxidant DJ-1 antibody and anti-C-Raf phosphorylation antibody. The activated DJ-1 induces the phosphorylation of C-Raf at Ser338 sites to activate directly C-Raf, and subsequently activates ERK1/2 signaling pathways to antagonize MPP+-induced neurotoxicity. Lack of DJ-1, oxidative stress can not promote C-Raf activation. Although the phosphorylation level of cell ERK is also increased, the increase of intranucleus pERK is not obvious. Wild type and DJ-1 knockout PC-12 cells can produce autophagical stress in the face of oxidative stress, but the proportion of autophagolysosomes produced in wild type PC-12 cells is larger than that in DJ-1 knockout cells. PD98059 can reduce autophagy stress in the state of oxidative stress in wild-type PC-12 cells, and the number of autophagolysosomes is similarly reduced, while sorafenib decreased slightly DJ-1 the autophagical stress, and the proportion of autophagolysosomes decreased more. Therefore, we can infer that activated DJ-1 directly phosphorylates C-Raf at Ser-338 sites, then activating C-Raf, subsequent activation of the MEK/ERK pathway. DJ-1 promotes autophagy maturation through the C-Raf/ERK pathway, thereby improving cell survival.
基金We thank Dr Wei-dong Le for providing the MES23.5 cell line. This work was supported by grants from the National Program of Basic Research sponsored by the Ministry of Science and Tech- nology of China (2006CB500704), the National Natural Science Foundation of China (30930036, 30770757, 30870858) and the Natural Science Fund of Shandong Province for Distinguished Young Scholars (JQ200807).
文摘Iron plays a key role in Parkinson's disease (PD). Increased iron content of the substantia nigra (SN) has been found in PD patients, and divalent metal transporter 1 (DMT1) has been shown to be up-regulated in the SN of both MPTP-induced PD models and PD patients. However, the mechanisms underlying DMT1 up-regulation are largely unknown. In the present study, we observed that in the SN of 6-hydroxydopamine (6-OHDA)-induced PD rats, DMT1 with the iron responsive element (IRE, DMTI+IRE), but not DMT1 without IRE (DMTI-IRE), was up- regulated, suggesting that increased DMTI+IRE expression might account for nigral iron accumulation in PD rats. This possibility was further assessed in an in vitro study using 6-OHDA-treated and DMTl+IRE-over-expressing MES23.5 cells. In 6-OHDA-treated MES23.5 cells, increased iron regulatory protein (IRP) 1 and IRP2 expression was observed, while silencing of IRPs dramatically diminished 6-OHDA-indueed DMTI+IRE up-regulation. Pre- treatment with N-acetyl-L-cysteine fully suppressed IRPs up-regulation by inhibition of 6-OHDA-indueed oxidative stress. Increased DMTI+IRE expression resulted in increased iron influx by MES23.5 cells. Our data provide direct evidence that DMTI+IRE up-regulation can account for IRE/IRP-dependent 6-OHDA-induced iron accumulation initiated by 6-OHDA-induced intracellular oxidative stress and that increased levels of intracellular iron result in ag- gravated oxidative stress. The results of this study provide novel evidence supporting the use of anti-oxidants in the treatment of PD, with the goal of inhibiting iron accumulation by regulation of DMT1 expression.
基金supported by the National Key Scientific R&D Program of China (2016YFC1306000)the National Natural Sciences Foundation of China (31471012, 81761148024, 31330030, and 81371393)+1 种基金the Suzhou Clinical Research Center of Neurological Disease (Szzx201503)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Parkinson's disease(PD) is the most common neurodegenerative movement disorder. Mutations in the DJ-1, including L166 P, are responsible for recessive earlyonset PD. Many lines of evidence have shown that L166 P is not only a loss-of-function mutant, but also a proapoptotic-like protein that results in mitochondrial dysfunction. L166 P has been reported to be unstable and to mislocalize to mitochondria. However, the mechanisms underlying the instability of L166 P compared to wild-type DJ-1 remain largely unknown. Here, we showed that Omi/Htr A2, a mitochondrial serine protease that has also been linked to the pathogenesis of PD, contributed to L166 P instability. Omi directly interacted with and cleaved L166 P in mitochondria to decrease the L166 P level. However,Omi did not bind and cleave wild-type DJ-1. Moreover,Omi cleaved L166 P at both serine residues 3 and 121,while L166 P-induced cell death under H_2O_2 treatment was alleviated by over-expression of Omi. Our data reveal a bridge between DJ-1 and Omi, two PD-associated geneticfactors, which contributes to our understanding of the pathogenesis of PD.
基金supported by a grant from National Natu-ral Sciences Foundation of China (No. 30570627).
文摘This study investigated the effect and mechanism of cell cycle reentry induced by 6-hydrodopamine (6-OHDA) in PC12 cells. By using neural differentiated PC12 cells treated with 6-OHDA, the apoptosis model of dopaminergic neurons was established. Cell viability was measured by MTT. Cell apoptosis and the distribution of cell cycle were assessed by flow cytometry. Western blot was used to detect the activation of extracellular regulator kinasel/2 (ERK1/2) pathway and the phosphorylation of retinoblastoma protein (RB). Our results showed that after PC12 cells were treated wtih 6-OHDA, the viability of PC12 cells was declined in a concentration-dependent manner. Flow cytornetry revealed that 6-OHDA could increase the apoptosis ratio of PC12 cells in a time-dependent manner. The percentage of ceils in G0/G1 phase of cell cycle was decreased and that in S phase and G2/M phase increased. Simultaneously, ERK1/2 pathway was activated and phosphorylated RB increased. It was concluded that 6-OHDA could induce cell cycle reentry of dopaminergic neurons through the activation of ERK1/2 pathway and RB phosphorylation. The aberrant cell cycle reentry contributes to the apoptosis of dopaminergic neurons.
基金This work was supported by the National Program of Basic Research(2011CB504104)of ChinaNatural Science Fund(81430022,81371407,30872729,30971031)+1 种基金The Twelfth Five-year National Science and Technology Support Program(2012BAI10B03)Shanghai Key Project of Basic Science Research(10411954500).
文摘Background:DJ-1 has been thought as a candidate biomarker for Parkinson’s disease(PD).It was found reduced in PD brains,CSF and saliva,although there were conflicting results.How DJ-1 expression may be regulated is not clear.Recently,blood-based DNA methylation represents a highly promising biomarker for PD by regulating the causative gene expression.Thus,in this study,we try to explore whether blood-based DNA methylation of DJ-1 could be used as a biomarker to differentiate PD patients from normal control(NC),and whether DNA methylation could regulate DJ-1 expression in a SH-SY5Y cell model.Methods:Forty PD patients and 40 NC were recruited in this study.DNA was extracted from peripheral blood leukocytes(PBLs).Methylation status of two CpG islands(CpG1 and CpG2)in promoter region of DJ-1 was explored by bisulfite specific PCR-based sequencing method.Methylation inhibitor 5-Aza-dC was used to treat SH-SY5Y cell line,DJ-1 level was detected in both mRNA and protein level.Results:CpG sites in these two CpG islands(CpG1 and CpG2)of DJ-1 were unmethylated in both PD and NC group.In SH-SY5Y cell model treated by methylation inhibitor,there was no significant change of DJ-1 expression in either mRNA level or protein level.Conclusions:Our results indicated that DNA methylation inhibitor didn’t alter DJ-1 gene expression in SH-SY5Y cell model,and DNA methylation of DJ-1 promoter region in PBLs level might not be an efficient biomarker for PD patients.
基金This work was supported by the National Key R&D Program of China(2018YFA0801403)the Key-Area Research and Development Program of Guangdong Province(2019B030335001)+6 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB32060200)the National Program for Key Basic Research Projects(973 Program:2015CB755605)the National Natural Science Foundation of China(81471312,81771387,81460352,81500983,31700897,31700910,31800901,31625013,and 91732302)the Applied Basic Research Programs of Science and Technology Commission Foundation of Yunnan Province(2017FB109,2018FB052,2018FB053,2019FA007,and 202001AT070130)Chinese Academy of Sciences"Light of West China"Program,Shanghai Brain-Intelligence Project from Science and Technology Commission of Shanghai Municipality(16JC1420501)Shanghai Municipal Science and Technology Major Project(2018SHZDZX05)Open Large Infrastructure Research of Chinese Academy of Sciences,and China Postdoctoral Science Foundation(2018M631105).
文摘Whether direct manipulation of Parkinson’s disease(PD)risk genes in the adult monkey brain can elicit a Parkinsonian phenotype remains an unsolved issue.Here,we used an adeno-associated virus serotype 9(AAV9)-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigras(SNs)of two monkey groups:an old group and a middle-aged group.After the operation,the old group exhibited all the classic PD symptoms,including bradykinesia,tremor,and postural instability,accompanied by key pathological hallmarks of PD,such as severe nigral dopaminergic neuron loss(>64%)and evidentα-synuclein pathology in the gene-edited SN.In contrast,the phenotype of their middle-aged counterparts,which also showed clear PD symptoms and pathological hallmarks,were less severe.In addition to the higher final total PD scores and more severe pathological changes,the old group were also more susceptible to gene editing by showing a faster process of PD progression.These results suggested that both genetic and aging factors played important roles in the development of PD in the monkeys.Taken together,this system can effectively develop a large number of genetically-edited PD monkeys in a short time(6–10 months),and thus provides a practical transgenic monkey model for future PD studies.