Although Caribbean mixed-species herbivorous fish groups are an important component to the reef community by helping to crop algae that often overgrow and kill corals, little is known of how they organize their foragi...Although Caribbean mixed-species herbivorous fish groups are an important component to the reef community by helping to crop algae that often overgrow and kill corals, little is known of how they organize their foraging groups. In spite of a highly flexible membership, the basic structure of these groups consists of a “core species,” that leads the group and often is either the striped parrotfish <i>(Scarus iserti)</i> or the ocean surgeon <i>(Acanthurus tractus)</i>. These species lead their groups to open areas where they feed largely on low profile turf algae. Other members prefer macro algae and are termed “associate species,” of which the two common species we studied were the stoplight parrotfish <i>(Sparisoma viride)</i> and the redband parrotfish <i>(Sparisoma aurofrenatum)</i>. In spite of the large difference in group sizes between Jamaica and Grand Cayman Islands, the relationships between movement patterns and compositional changes were largely consistent. There was no support for the hypothesis that these dramatic and continuous group changes were related to foraging success. Instead, we speculated that these group changes perhaps were designed to maintain cohesion among a membership that was spread over a wide area. We also examined if associates species may be more than just passive followers of core species but rather instigated the attracting or the building of core groups. Both associate species do attract striped parrotfish in open areas and thus appear active in initiating mixed-species groups. Finally, given that associate species seem to derive little foraging benefit from following core species, we tested the hypothesis that associate species joined core groups to gain protection against predators. Associate species do not selectively join the larger groups of striped parrotfish but appear to join core species randomly and the groups they joined resembled the wide assortment of core groups available in the area. Thus, while associates may be joining core groups for protection, this protection was not based on sizes of core groups.展开更多
Fish livers a good source of long-chain polyunsaturated fatty acids and omega 3, are usually discarded as a waste when fish are processed for human consumption in Sudan. Highly fresh <span style="font-family:V...Fish livers a good source of long-chain polyunsaturated fatty acids and omega 3, are usually discarded as a waste when fish are processed for human consumption in Sudan. Highly fresh <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i></i></span></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">Triaenodon obesus</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> and</span><i> </i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"><i></i></span></i></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">Hipposcarus harid</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span><span><i><span style="font-family:;" "=""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">fish were purchased from Port Sudan fish central market during December 2014. The fatty acid profiles of the livers of these commercially important fish were determined. The polyunsaturated and saturated fatty acids ratio in the livers oil of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i></i></span></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">T. obesus</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i></i></span></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">H. harid</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> was 1:2.2 and 1:1.38, respectively. The Palmatic (16:0), Pentadecenoic (12:0) and Arachidic acids were the highest in both species. The poly chain unsaturated fatty acids Linolenic (18:3n</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">3), Eicosapentaenoic (20:5n</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">3) and Docosahexaenoic (22:6n</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">3) were detected in the liver of both species. The highest values of above poly chain unsaturated fatty acids were detected in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i></i></span></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">T. obesus</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">.</span></i></span></span>展开更多
文摘Although Caribbean mixed-species herbivorous fish groups are an important component to the reef community by helping to crop algae that often overgrow and kill corals, little is known of how they organize their foraging groups. In spite of a highly flexible membership, the basic structure of these groups consists of a “core species,” that leads the group and often is either the striped parrotfish <i>(Scarus iserti)</i> or the ocean surgeon <i>(Acanthurus tractus)</i>. These species lead their groups to open areas where they feed largely on low profile turf algae. Other members prefer macro algae and are termed “associate species,” of which the two common species we studied were the stoplight parrotfish <i>(Sparisoma viride)</i> and the redband parrotfish <i>(Sparisoma aurofrenatum)</i>. In spite of the large difference in group sizes between Jamaica and Grand Cayman Islands, the relationships between movement patterns and compositional changes were largely consistent. There was no support for the hypothesis that these dramatic and continuous group changes were related to foraging success. Instead, we speculated that these group changes perhaps were designed to maintain cohesion among a membership that was spread over a wide area. We also examined if associates species may be more than just passive followers of core species but rather instigated the attracting or the building of core groups. Both associate species do attract striped parrotfish in open areas and thus appear active in initiating mixed-species groups. Finally, given that associate species seem to derive little foraging benefit from following core species, we tested the hypothesis that associate species joined core groups to gain protection against predators. Associate species do not selectively join the larger groups of striped parrotfish but appear to join core species randomly and the groups they joined resembled the wide assortment of core groups available in the area. Thus, while associates may be joining core groups for protection, this protection was not based on sizes of core groups.
文摘Fish livers a good source of long-chain polyunsaturated fatty acids and omega 3, are usually discarded as a waste when fish are processed for human consumption in Sudan. Highly fresh <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i></i></span></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">Triaenodon obesus</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> and</span><i> </i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"><i></i></span></i></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">Hipposcarus harid</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span><span><i><span style="font-family:;" "=""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">fish were purchased from Port Sudan fish central market during December 2014. The fatty acid profiles of the livers of these commercially important fish were determined. The polyunsaturated and saturated fatty acids ratio in the livers oil of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i></i></span></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">T. obesus</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i></i></span></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">H. harid</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> was 1:2.2 and 1:1.38, respectively. The Palmatic (16:0), Pentadecenoic (12:0) and Arachidic acids were the highest in both species. The poly chain unsaturated fatty acids Linolenic (18:3n</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">3), Eicosapentaenoic (20:5n</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">3) and Docosahexaenoic (22:6n</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">3) were detected in the liver of both species. The highest values of above poly chain unsaturated fatty acids were detected in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i></i></span></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">T. obesus</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">.</span></i></span></span>