The accurate identification of various postures in the daily life of piglets that are directly reflected by their skeleton morphology is necessary to study the behavioral characteristics of pigs.Accordingly,this study...The accurate identification of various postures in the daily life of piglets that are directly reflected by their skeleton morphology is necessary to study the behavioral characteristics of pigs.Accordingly,this study proposed a novel approach for the skeleton extraction and pose estimation of piglets.First,an improved Zhang-Suen(ZS)thinning algorithm based on morphology was used to establish the chain code mechanism of the burr and the redundant information deletion templates to achieve a single-pixel width extraction of pig skeletons.Then,body nodes were extracted on the basis of the improved DeepLabCut(DLC)algorithm,and a part affinity field(PAF)was added to realize the connection of body nodes,and consequently,construct a database of pig behavior and postures.Finally,a support vector machine was used for pose matching to recognize the main behavior of piglets.In this study,14000 images of piglets with different types of behavior were used in posture recognition experiments.Results showed that the improved algorithm based on ZS-DLC-PAF achieved the best thinning rate compared with those of distance transformation,medial axis transformation,morphology refinement,and the traditional ZS algorithm.The node tracking accuracy reached 85.08%,and the pressure test could accurately detect up to 35 nodes of 5 pigs.The average accuracy of posture matching was 89.60%.This study not only realized the single-pixel extraction of piglets’skeletons but also the connection among the different behavior body nodes of individual sows and multiple piglets.Furthermore,this study established a database of pig posture behavior,which provides a reference for studying animal behavior identification and classification and anomaly detection.展开更多
Human pose recognition and estimation in video is pervasive.However,the process noise and local occlusion bring great challenge to pose recognition.In this paper,we introduce the Kalman filter into pose recognition to...Human pose recognition and estimation in video is pervasive.However,the process noise and local occlusion bring great challenge to pose recognition.In this paper,we introduce the Kalman filter into pose recognition to reduce noise and solve local occlusion problem.The core of pose recognition in video is the fast detection of key points and the calculation of human steering angles.Thus,we first build a human key point detection model.Frame skipping is performed based on the Hamming distance of the hash value of every two adjacent frames in video.Noise reduction is performed on key point coordinates with the Kalman filter.To calculate the human steering angle,current state information of key points is predicted using the optimal estimation of key points at the previous time.Then human steering angle can be calculated based on current and previous state information.The improved SENet,NLNet and GCNet modules are integrated into key point detection model for improving accuracy.Tests are also given to illustrate the effectiveness of the proposed algorithm.展开更多
基金This work was financially supported by the National Major Science and Technology Project(Innovation 2030)of China(Grant No.2021ZD0113701).
文摘The accurate identification of various postures in the daily life of piglets that are directly reflected by their skeleton morphology is necessary to study the behavioral characteristics of pigs.Accordingly,this study proposed a novel approach for the skeleton extraction and pose estimation of piglets.First,an improved Zhang-Suen(ZS)thinning algorithm based on morphology was used to establish the chain code mechanism of the burr and the redundant information deletion templates to achieve a single-pixel width extraction of pig skeletons.Then,body nodes were extracted on the basis of the improved DeepLabCut(DLC)algorithm,and a part affinity field(PAF)was added to realize the connection of body nodes,and consequently,construct a database of pig behavior and postures.Finally,a support vector machine was used for pose matching to recognize the main behavior of piglets.In this study,14000 images of piglets with different types of behavior were used in posture recognition experiments.Results showed that the improved algorithm based on ZS-DLC-PAF achieved the best thinning rate compared with those of distance transformation,medial axis transformation,morphology refinement,and the traditional ZS algorithm.The node tracking accuracy reached 85.08%,and the pressure test could accurately detect up to 35 nodes of 5 pigs.The average accuracy of posture matching was 89.60%.This study not only realized the single-pixel extraction of piglets’skeletons but also the connection among the different behavior body nodes of individual sows and multiple piglets.Furthermore,this study established a database of pig posture behavior,which provides a reference for studying animal behavior identification and classification and anomaly detection.
基金This work was supported by the National Natural Science Foundation of China(Nos.72101026,61621063)the State Key Laboratory of Intelligent Control and Decision of Complex Systems.
文摘Human pose recognition and estimation in video is pervasive.However,the process noise and local occlusion bring great challenge to pose recognition.In this paper,we introduce the Kalman filter into pose recognition to reduce noise and solve local occlusion problem.The core of pose recognition in video is the fast detection of key points and the calculation of human steering angles.Thus,we first build a human key point detection model.Frame skipping is performed based on the Hamming distance of the hash value of every two adjacent frames in video.Noise reduction is performed on key point coordinates with the Kalman filter.To calculate the human steering angle,current state information of key points is predicted using the optimal estimation of key points at the previous time.Then human steering angle can be calculated based on current and previous state information.The improved SENet,NLNet and GCNet modules are integrated into key point detection model for improving accuracy.Tests are also given to illustrate the effectiveness of the proposed algorithm.