期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Discrete Heat Equation Model with Shift Values
1
作者 G. Britto Antony Xavier S. John Borg M. Meganathan 《Applied Mathematics》 2017年第9期1343-1350,共8页
We investigate the generalized partial difference operator and propose a model of it in discrete heat equation in this paper. The diffusion of heat is studied by the application of Newton’s law of cooling in dimensio... We investigate the generalized partial difference operator and propose a model of it in discrete heat equation in this paper. The diffusion of heat is studied by the application of Newton’s law of cooling in dimensions up to three and several solutions are postulated for the same. Through numerical simulations using MATLAB, solutions are validated and applications are derived. 展开更多
关键词 Generalized partial difference equation partial difference operator and discrete heat equation
下载PDF
INVARIANTS-PRESERVING DU FORT-FRANKEL SCHEMES AND THEIR ANALYSES FOR NONLINEAR SCHRÖDINGER EQUATIONS WITH WAVE OPERATOR
2
作者 Dingwen Deng Zhijun Li 《Journal of Computational Mathematics》 SCIE CSCD 2024年第3期814-850,共37页
Du Fort-Frankel finite difference method(FDM)was firstly proposed for linear diffusion equations with periodic boundary conditions by Du Fort and Frankel in 1953.It is an explicit and unconditionally von Neumann stabl... Du Fort-Frankel finite difference method(FDM)was firstly proposed for linear diffusion equations with periodic boundary conditions by Du Fort and Frankel in 1953.It is an explicit and unconditionally von Neumann stable scheme.However,there has been no research work on numerical solutions of nonlinear Schrödinger equations with wave operator by using Du Fort-Frankel-type finite difference methods(FDMs).In this study,a class of invariants-preserving Du Fort-Frankel-type FDMs are firstly proposed for one-dimensional(1D)and two-dimensional(2D)nonlinear Schrödinger equations with wave operator.By using the discrete energy method,it is shown that their solutions possess the discrete energy and mass conservative laws,and conditionally converge to exact solutions with an order of for ofο(T^(2)+h_(x)^(2)+(T/h_(x))^(2))1D problem and an order ofο(T^(2)+h_(x)^(2)+h_(Y)^(2)+(T/h_(X))^(2)+(T/h_(y))^(2))for 2D problem in H1-norm.Here,τdenotes time-step size,while,hx and hy represent spatial meshsizes in x-and y-directions,respectively.Then,by introducing a stabilized term,a type of stabilized invariants-preserving Du Fort-Frankel-type FDMs are devised.They not only preserve the discrete energies and masses,but also own much better stability than original schemes.Finally,numerical results demonstrate the theoretical analyses. 展开更多
关键词 Nonlinear Schrodinger equations with wave operator Du Fort-Frankel finite difference methods discrete energy and mass conservative laws Numerical convergence
原文传递
Discrete Fractional Lagrange Equations of Nonconservative Systems 被引量:3
3
作者 SONG Chuanjing ZHANG Yi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第1期175-180,共6页
In order to study discrete nonconservative system,Hamilton's principle within fractional difference operators of Riemann-Liouville type is given. Discrete Lagrange equations of the nonconservative system as well a... In order to study discrete nonconservative system,Hamilton's principle within fractional difference operators of Riemann-Liouville type is given. Discrete Lagrange equations of the nonconservative system as well as the nonconservative system with dynamic constraint are established within fractional difference operators of Riemann-Liouville type from the view of time scales. Firstly,time scale calculus and fractional calculus are reviewed.Secondly,with the help of the properties of time scale calculus,discrete Lagrange equation of the nonconservative system within fractional difference operators of Riemann-Liouville type is presented. Thirdly,using the Lagrange multipliers,discrete Lagrange equation of the nonconservative system with dynamic constraint is also established.Then two special cases are discussed. Finally,two examples are devoted to illustrate the results. 展开更多
关键词 discrete LAGRANGE equation time scale FRACTIONAL difference operator NONCONSERVATIVE system
下载PDF
Traveling Waves for 2-1 Dimension Lattice Difference Equations 被引量:1
4
作者 HE Yan-sheng HOU Cheng-min 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第2期214-223,共10页
A definition is introduced about traveling waves of 2-1 dimension lattice difference equations. Discrete heat equation is introduced and a discussion is given for the existence of traveling waves. The theory of travel... A definition is introduced about traveling waves of 2-1 dimension lattice difference equations. Discrete heat equation is introduced and a discussion is given for the existence of traveling waves. The theory of traveling waves is extended on 2-1 dimension lattice difference equations. As an application, an example is presented to illustrate the main results. 展开更多
关键词 traveling waves lattice difference equations discrete heat equation
下载PDF
NUMERICAL SOLUTION OF A SINGULARLY PERTURBED ELLIPTIC-HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION ON A NONUNIFORM DISCRETIZATION MESH
5
作者 吴启光 孙晓弟 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第12期1081-1088,共8页
In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order converge... In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order convergent, uniformly in the small parameter e , to the solution of problem (1.1). Numerical results are finally provided. 展开更多
关键词 partial differential equation singular perturbation problem upwind difference scheme nonuniform discretization mesh
下载PDF
Compact ADI Method for Solving Heat Equations in Multi-dimension
6
作者 王晓峰 袁合才 《Chinese Quarterly Journal of Mathematics》 CSCD 2011年第4期556-562,共7页
A compact alternating direction implicit(ADI) method has been developed for solving multi-dimensional heat equations by introducing the differential operators and the truncation error is O(τ 2 + h 4 ). It is shown by... A compact alternating direction implicit(ADI) method has been developed for solving multi-dimensional heat equations by introducing the differential operators and the truncation error is O(τ 2 + h 4 ). It is shown by the discrete Fourier analysis that this new ADI scheme is unconditionally stable and the truncation error O(τ 3 + h 6 ) is gained with once Richardson's extrapolation. Some numerical examples are presented to demonstrate the efficiency and accuracy of the new scheme. 展开更多
关键词 heat equation differential operators ADI difference scheme absolutely stable
下载PDF
ON SOME DISCRETE INEQUALITIES USEFUL IN THE THEORY OF CERTAINPARTIAL FINITE DIFFERENCE EQUATIONS 被引量:1
7
作者 B. G. Pachpatte(Marathwada University, Aurangabad 431004, India) 《Annals of Differential Equations》 1996年第1期1-12,共12页
The aim of this paper is to establish some new discrete inequalities in two independent variables which can be used as handy tools.in the theory of certain fourth order partial finite difference equations. The analys... The aim of this paper is to establish some new discrete inequalities in two independent variables which can be used as handy tools.in the theory of certain fourth order partial finite difference equations. The analysis used in the proof is elementary and the results established provide new estimates for these types of inequalities.AMS (MOS) Subject Classification (1991 ): Primary 26D15. 展开更多
关键词 and Phrases: Wendroff like discrete inequalities partial finite difference equation Bound on the solution continuous dependence
原文传递
基于反热传导方程与Sobel算子的图像锐化方法 被引量:3
8
作者 赵恩良 孙丽华 +1 位作者 周巧姝 徐英祥 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2009年第6期1221-1224,共4页
目的应用偏微分方程理论与经典的图像锐化算子,研究图像锐化的有效方法.方法根据热传导方程的物理意义,把图像的灰度值视为平面物体的温度,推导出反热传导方程,在满足模糊图像是原图像被热传导滤波器作用的结果和参数t足够小的情况下,... 目的应用偏微分方程理论与经典的图像锐化算子,研究图像锐化的有效方法.方法根据热传导方程的物理意义,把图像的灰度值视为平面物体的温度,推导出反热传导方程,在满足模糊图像是原图像被热传导滤波器作用的结果和参数t足够小的情况下,建立图像锐化模型,利用Sobel算子求解偏微分方程,实现图像锐化.结果数值实验显示应用笔者所提方法对图像进行锐化,得到了相对清晰的图像,锐化后的图像没有信息偏移现象,而且不会出现噪声.同时对图像的边缘和细节特征保持较好.结论笔者所提算法具有长时间计算的稳定性,锐化图像不会随着迭代次数的增加而变得模糊,是一种有效的图像锐化方法. 展开更多
关键词 偏微分方程 图像锐化 SOBEL算子 反热传导方程
下载PDF
三维热传导方程的紧交替方向差分格式(英文) 被引量:1
9
作者 王晓峰 李订芳 +1 位作者 李博 温成峰 《数学杂志》 CSCD 北大核心 2010年第5期761-767,共7页
本文研究了三维热传导方程的紧交替方向隐式差分格式。利用算子方法导出了紧交替方向隐式差分格式,并利用Fourier分析方法证明了差分格式的收敛性何绝对稳定性,Richardson外推法外推一次得到具有O(T3+h6)阶精度的近似解。本文方法是对... 本文研究了三维热传导方程的紧交替方向隐式差分格式。利用算子方法导出了紧交替方向隐式差分格式,并利用Fourier分析方法证明了差分格式的收敛性何绝对稳定性,Richardson外推法外推一次得到具有O(T3+h6)阶精度的近似解。本文方法是对二维热传导方程问题的推广,同样适用于多维情形。 展开更多
关键词 热传导方程 差分算子 紧交替方向差分格式 绝对稳定
下载PDF
一类分数阶q型差分边值问题中的混合单调方法 被引量:1
10
作者 韩伟 孟晓宇 桑彦彬 《河北科技大学学报》 CAS 2019年第4期307-316,共10页
为了研究一类非线性分数阶q型差分方程边值问题非平凡解的存在唯一性。首先,在一个新的集合上定义一个新概念,再利用正规锥的定义,建立了2个混合单调算子唯一不动点的存在性,获得了线性分数阶q型边值问题的Green函数,并且对Green函数的... 为了研究一类非线性分数阶q型差分方程边值问题非平凡解的存在唯一性。首先,在一个新的集合上定义一个新概念,再利用正规锥的定义,建立了2个混合单调算子唯一不动点的存在性,获得了线性分数阶q型边值问题的Green函数,并且对Green函数的上下界进行了估计,由此可得到特解的表达形式。其次,运用抽象定理,讨论了符合定理条件的非线性项,建立了上述问题的唯一解的存在性,并获得逼近唯一解的迭代序列,进而证明了分数阶q型差分方程边值问题非平凡解的存在唯一性。最后,通过列举一个例子来说明主要定理和结果的有效性。研究结果表明,定理条件得证且方程组边值问题非平凡解满足存在唯一性。研究方法在理论证明和边值问题方面都得到了良好的结果,对探究其他边值问题具有一定的借鉴意义。 展开更多
关键词 非线性偏微分方程 分数阶q型差分方程 混合单调算子 存在唯一性 非平凡解
下载PDF
一类偏积分微分方程二阶差分全离散格式 被引量:1
11
作者 陈红斌 徐大 《数学理论与应用》 2005年第1期43-47,共5页
本文给出了数值求解一类偏积分微分方程的二阶全离散差分格式.采用了Crank- Nicolson格式;积分项的离散利用了Lubich的二阶卷积积分公式;给出了稳定性的证明,误差估计及收敛性的结果.
关键词 二阶 积分微分方程 全离散 阶差 收敛性 误差估计 差分格式 证明 公式 数值求解
下载PDF
数学建模中的方程思想及其应用 被引量:2
12
作者 洪宝剑 《哈尔滨师范大学自然科学学报》 CAS 2013年第5期29-32,共4页
研究如何应用微分方程及差分方程的思想和理论建立实际问题的数学模型.在大学数学教学中不断渗透方程建模的思想与方法,不仅能大大激发学生学习数学的兴趣,提高他们应用数学知识分析问题和解决问题的能力,而且能够极大丰富课堂教学的内... 研究如何应用微分方程及差分方程的思想和理论建立实际问题的数学模型.在大学数学教学中不断渗透方程建模的思想与方法,不仅能大大激发学生学习数学的兴趣,提高他们应用数学知识分析问题和解决问题的能力,而且能够极大丰富课堂教学的内涵,有效提高课堂教学质量. 展开更多
关键词 数学建模 常微分方程 差分方程 偏微分方程
下载PDF
在非均匀网格上解椭圆—双曲型偏微分方程奇异摄动问题 被引量:1
13
作者 吴启光 孙晓弟 《应用数学和力学》 EI CSCD 北大核心 1992年第12期1037-1044,共8页
本文考察了椭圆一双曲型偏微分方程奇异摄动问题(1.1),证明了迎风差分格式在一特殊的非均匀网格上是一阶一致收敛的.最后给出了一些数值结果.
关键词 偏微分方程 非均匀网格 奇摄动
下载PDF
弹性力学的导出方程及其离散格式
14
作者 田中旭 刘正兴 唐立民 《上海交通大学学报》 EI CAS CSCD 北大核心 2001年第4期630-633,共4页
给出了弹性力学控制微分方程更为一般的弱形式——导出方程 .由导出方程可导出一种新的离散格式 ,该格式不要求位移协调 ,并能给出很好的计算精度 ;还可导出有限元法 ,并给出了观察有限元的新途径 .有利于使各种有限元法系统化 。
关键词 导出方程 位移连续性 离散算子差分 弹性力学 有限元法 控制微分方程
下载PDF
基于PDE的线条痕迹图像去噪算法研究
15
作者 张哲 杨敏 朱铮涛 《计算机工程》 CAS CSCD 北大核心 2016年第11期277-280,共4页
由于金属表面的锈蚀,使得线条痕迹图像易受噪声影响,造成图像特征提取、比对和分析困难等问题。常用的去噪方法如高斯滤波易破坏边缘特征,形成边缘偏移,均值滤波不能够有效区分边缘与背景。为此,提出一种新的图像去噪算法。在以PM方程... 由于金属表面的锈蚀,使得线条痕迹图像易受噪声影响,造成图像特征提取、比对和分析困难等问题。常用的去噪方法如高斯滤波易破坏边缘特征,形成边缘偏移,均值滤波不能够有效区分边缘与背景。为此,提出一种新的图像去噪算法。在以PM方程为扩散模型的偏微分方程滤波算法中,根据条纹的纹理特性,在不同扩散方向系数中引入不同权值,同时在迭代中依据图像的灰度直方图选取扩散门限。实验结果表明,线条痕迹图像降噪效果优于PM模型和林石算子,在处理线条痕迹图像中有较好的应用价值。 展开更多
关键词 线条痕迹 图像去噪 偏微分方程 PM方程 林石算子 扩散门限
下载PDF
一种基于PETSc的热传导方程大规模并行求解策略
16
作者 程汤培 王群 《计算机科学》 CSCD 北大核心 2009年第11期160-164,共5页
提出了一种大规模热传导方程并行求解的策略,采用了分布式内存和压缩矩阵技术解决超大规模稀疏矩阵的存储及其计算,整合了多种Krylov子空间方法和预条件子技术来并行求解大规模线性方程组,基于面向对象设计实现了具体应用与算法的低耦... 提出了一种大规模热传导方程并行求解的策略,采用了分布式内存和压缩矩阵技术解决超大规模稀疏矩阵的存储及其计算,整合了多种Krylov子空间方法和预条件子技术来并行求解大规模线性方程组,基于面向对象设计实现了具体应用与算法的低耦合。在Linux机群系统上进行了性能测试,程序具有良好的加速比和计算性能。 展开更多
关键词 热传导方程 偏微分方程组 有限差分法 并行算法
下载PDF
一类带弱奇异核的偏积分微分方程的二阶差分全离散格式
17
作者 胡满佳 万正苏 方春华 《湖南理工学院学报(自然科学版)》 CAS 2010年第4期14-17,共4页
考虑一类带弱奇异核抛物型偏积分微分方程,时间方向采用二阶向后Euler格式进行离散,为了提高格式的精度,空间方向采用由孙志忠提出的六点高精隐格式离散,对积分项先关于时间作被积函数的插值近似再积分,导出了计算较简单的全离散格式,... 考虑一类带弱奇异核抛物型偏积分微分方程,时间方向采用二阶向后Euler格式进行离散,为了提高格式的精度,空间方向采用由孙志忠提出的六点高精隐格式离散,对积分项先关于时间作被积函数的插值近似再积分,导出了计算较简单的全离散格式,并通过数值试验验证了该离散格式具有很好的稳定性和收敛性. 展开更多
关键词 弱奇异核 偏积分微分方程 二阶全离散 六点高精隐格式 差分格式
下载PDF
采用能量守恒和高阶Padé近似的三维水声抛物方程模型 被引量:10
18
作者 徐传秀 朴胜春 +2 位作者 杨士莪 张海刚 唐骏 《声学学报》 EI CSCD 北大核心 2016年第4期477-484,共8页
为了充分考虑海底地形随三维空间变化的海洋环境中水平方位角耦合效应对声传播的影响,建立了一种三维柱坐标系下流体高阶抛物方程算法。该算法采用泰勒近似将二维方根算子分裂成一维方根算子,并采用分裂步进的高阶Pade近似将一维方根算... 为了充分考虑海底地形随三维空间变化的海洋环境中水平方位角耦合效应对声传播的影响,建立了一种三维柱坐标系下流体高阶抛物方程算法。该算法采用泰勒近似将二维方根算子分裂成一维方根算子,并采用分裂步进的高阶Pade近似将一维方根算子写成微分算子有理分式连乘的形式,进而应用Galerkin离散化方法来处理微分算子,最终将微分方程写成矩阵方程的形式;采用能量守恒近似来处理海底边界,以考虑复杂海底对于声传播的影响;采用交替方向隐式格式,实现了三维声场的步进计算。楔形和海底山等典型海域声场仿真计算表明,相比于已有的声场计算模型,三维柱坐标系下高阶抛物方程模型可以更加精确地计算楔形海域和海底山区域的三维声场,实现水平方位全空间声场计算。 展开更多
关键词 抛物方程 Pad 微分算子 声场分布 海底山 声传播 楔形 离散化方法 传播损失 海洋环境
下载PDF
有限差分法对瞬态热交换过程的模拟与分析 被引量:1
19
作者 崔嘉珺 陈潇扬 陈革 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期122-126,132,共6页
在热废气/水蒸发器工作过程中,进口温度发生突变会导致热交换过程发生瞬变.结合偏微分方程和有限差分法,使用C#语言对套管换热器在单相顺流条件下的瞬态热交换过程建立数学模型.通过仿真分析可以得到高温气体、水和管壁的温度变化情况,... 在热废气/水蒸发器工作过程中,进口温度发生突变会导致热交换过程发生瞬变.结合偏微分方程和有限差分法,使用C#语言对套管换热器在单相顺流条件下的瞬态热交换过程建立数学模型.通过仿真分析可以得到高温气体、水和管壁的温度变化情况,以及瞬态逐渐趋近于稳态的热交换变化过程.此模型还可用于验证其他模型稳态过程的准确性. 展开更多
关键词 套管换热器 瞬态热交换 偏微分方程 有限差分法
下载PDF
一类偏积分微分方程一阶差分全离散格式
20
作者 刘艳 徐大 《数学理论与应用》 2008年第2期94-98,共5页
本文给出了数值求解一类偏积分微分方程的一阶差分全离散格式。时间方向采用了一阶向后差分格式,空间方向采用二阶差分格式,给出了稳定性的证明,误差估计及收敛性的结果,并给出了数值例子。
关键词 偏积分微分方程 分数次计算 差分格式 一阶全离散
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部