Actinobacterial community is a conspicuous part of aquatic ecosystems and displays an important role in the case of biogeochemical cycle,but little is known about the seasonal variation of actinobacterial community in...Actinobacterial community is a conspicuous part of aquatic ecosystems and displays an important role in the case of biogeochemical cycle,but little is known about the seasonal variation of actinobacterial community in reservoir ecological environment.In this study,the high-throughput techniques were used to investigate the structure of the aquatic actinobacterial community and its inducing water quality parameters in different seasons.The results showed that the highest diversity and abundance of actinobacterial community occurred in winter,with Sporichthya(45.42%)being the most abundant genus and Rhodococcus sp.(29.32%)being the most abundant species.Network analysis and correlation analysis suggested that in autumn the dynamics of actinobacterial community were infuenced by more factors and Nocardioides sp.SX2R5S2 was the potential keystone species which was negatively correlated with temperature(R=-0.72,P<0.05).Changes in environmental factors could significantly affect the changes in actinobacterial community,and the dynamics of temperature,dissolved oxygen(DO),and turbidity are potential conspicuous factors infuencing seasonal actinobacterial community trends.The partial least squares path modeling further elucidated that the combined effects of DO and temperature not only in the diversity of actinobacterial community but also in other water qualities,while the physiochemical parameters(path coefficient=1.571,P<0.05)was strong environmental factors in natural mixture period.These results strengthen our understanding of the dynamics and structures of actinobacterial community in the drinking water reservoirs and provide scientific guidance for further water quality management and protection in water sources.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51978561,51979217,and 52270168)the National Key Research and Development Program of China (No.2022YFC3203604)+3 种基金the Youth Innovation Team of Shaanxi Universities (PI Zhang Haihan)the Grant from Youth Innovation Team of Shaanxi Universities in 2021 (No.21JP061)the Scientific Research Program Funded by Education Department of Shaanxi Provincial Government (No.22JY034)the Natural Science Basic Research Program of Shaanxi Province (No.2022JM-224)。
文摘Actinobacterial community is a conspicuous part of aquatic ecosystems and displays an important role in the case of biogeochemical cycle,but little is known about the seasonal variation of actinobacterial community in reservoir ecological environment.In this study,the high-throughput techniques were used to investigate the structure of the aquatic actinobacterial community and its inducing water quality parameters in different seasons.The results showed that the highest diversity and abundance of actinobacterial community occurred in winter,with Sporichthya(45.42%)being the most abundant genus and Rhodococcus sp.(29.32%)being the most abundant species.Network analysis and correlation analysis suggested that in autumn the dynamics of actinobacterial community were infuenced by more factors and Nocardioides sp.SX2R5S2 was the potential keystone species which was negatively correlated with temperature(R=-0.72,P<0.05).Changes in environmental factors could significantly affect the changes in actinobacterial community,and the dynamics of temperature,dissolved oxygen(DO),and turbidity are potential conspicuous factors infuencing seasonal actinobacterial community trends.The partial least squares path modeling further elucidated that the combined effects of DO and temperature not only in the diversity of actinobacterial community but also in other water qualities,while the physiochemical parameters(path coefficient=1.571,P<0.05)was strong environmental factors in natural mixture period.These results strengthen our understanding of the dynamics and structures of actinobacterial community in the drinking water reservoirs and provide scientific guidance for further water quality management and protection in water sources.