Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobse...Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobserved error. In Ref[1,2], it wes proved that the estimator for the asymptotic variance of βn(βn) is consistent. In this paper, we establish the limit distribution and the law of the iterated logarithm for,En, and obtain the convergest rates for En and the strong uniform convergent rates for gn(gn).展开更多
Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the est...Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3).展开更多
This article concerded with a semiparametric generalized partial linear model (GPLM) with the type Ⅱ censored data. A sieve maximum likelihood estimator (MLE) is proposed to estimate the parameter component, allo...This article concerded with a semiparametric generalized partial linear model (GPLM) with the type Ⅱ censored data. A sieve maximum likelihood estimator (MLE) is proposed to estimate the parameter component, allowing exploration of the nonlinear relationship between a certain covariate and the response function. Asymptotic properties of the proposed sieve MLEs are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. Moreover, the estimators of the unknown parameters are asymptotically normal and efficient, and the estimator of the nonparametric function has an optimal convergence rate.展开更多
Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under inde...Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under independent errors,few authors have considered model averaging for semiparametric models with correlated errors.In this paper,the authors offer an optimal model averaging method to improve the prediction in partially linear model for longitudinal data.The model averaging weights are obtained by minimizing criterion,which is an unbiased estimator of the expected in-sample squared error loss plus a constant.Asymptotic properties,including asymptotic optimality and consistency of averaging weights,are established under two scenarios:(i)All candidate models are misspecified;(ii)Correct models are available in the candidate set.Simulation studies and an empirical example show that the promise of the proposed procedure over other competitive methods.展开更多
For partial linear model Y = X τ β 0 + g 0(T) + ∈ with unknown β 0 ∈ ? d and an unknown smooth function g 0, this paper considers the Huber-Dutter estimators of β 0, scale σ for the errors and the function g 0 ...For partial linear model Y = X τ β 0 + g 0(T) + ∈ with unknown β 0 ∈ ? d and an unknown smooth function g 0, this paper considers the Huber-Dutter estimators of β 0, scale σ for the errors and the function g 0 approximated by the smoothing B-spline functions, respectively. Under some regularity conditions, the Huber-Dutter estimators of β 0 and σ are shown to be asymptotically normal with the rate of convergence n ?1/2 and the B-spline Huber-Dutter estimator of g 0 achieves the optimal rate of convergence in nonparametric regression. A simulation study and two examples demonstrate that the Huber-Dutter estimator of β 0 is competitive with its M-estimator without scale parameter and the ordinary least square estimator.展开更多
This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author als...This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author also found that the estimators show remarkable in the small sample case yet.展开更多
A partial linear model with missing response variables and error-prone covariates is considered. The imputation approach is developed to estimate the regression coefficients and the nonparametric function. The propose...A partial linear model with missing response variables and error-prone covariates is considered. The imputation approach is developed to estimate the regression coefficients and the nonparametric function. The proposed parametric estimators are shown to be asymptotically normal, and the estimators for the nonparametric part are proved to converge at an optimal rate. To construct confidence regions for the regression coefficients and the nonparametric function, respectively, the authors also propose the empirical-likelihood-based statistics and investigate the limit distributions of the empirical likelihood ratios. The simulation study is conducted to compare the finite sample behavior for the proposed estimators. An application to an AIDS dataset is illustrated.展开更多
For partial linear model Y = X~τβ_0 + g_0(T) + ε with unknown β_0 ∈ R^dand an unknown smooth function g_0, this paper considers the Huber-Dutter estimators of β_0, scaleσ for the errors and the function g_0 res...For partial linear model Y = X~τβ_0 + g_0(T) + ε with unknown β_0 ∈ R^dand an unknown smooth function g_0, this paper considers the Huber-Dutter estimators of β_0, scaleσ for the errors and the function g_0 respectively, in which the smoothing B-spline function isused. Under some regular conditions, it is shown that the Huber-Dutter estimators of β_0 and σ areasymptotically normal with convergence rate n^(-1/2) and the B-spline Huber-Dutter estimator of g_0achieves the optimal convergence rate in nonparametric regression. A simulation study demonstratesthat the Huber-Dutter estimator of β_0 is competitive with its M-estimator without scale parameterand the ordinary least square estimator. An example is presented after the simulation study.展开更多
In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under so...In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under some regular conditions, the asymptotic properties of the estimators are obtained. To avoid the computation of high-dimensional integral, a robust Monte Carlo Newton-Raphson algorithm is used. Some simulations are carried out to study the performance of the proposed robust estimators. In addition, the authors also study the robustness and the efficiency of the proposed estimators by simulation. Finally, two real longitudinal data sets are analyzed.展开更多
In this paper, under some fairly general conditions, a first-order Edgeworth expansion for the standardized statistic of βin partial linear models is given, then a non-residual type of consistent estimation for the e...In this paper, under some fairly general conditions, a first-order Edgeworth expansion for the standardized statistic of βin partial linear models is given, then a non-residual type of consistent estimation for the error variance is constructed, and finally an Edgeworth expansion for the corresponding studentized version is presented.展开更多
Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Mulle...Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(). Baed on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some aspoptotic results about estimates.展开更多
Current status data often arise in survival analysis and reliability studies, when a continuous response is reduced to an indicator of whether the response is greater or less than an observed random threshold value. T...Current status data often arise in survival analysis and reliability studies, when a continuous response is reduced to an indicator of whether the response is greater or less than an observed random threshold value. This article considers a partial linear model with current status data. A sieve least squares estimator is proposed to estimate both the regression parameters and the nonparametric function. This paper shows, under some mild condition, that the estimators are strong consistent. Moreover, the parameter estimators are normally distributed, while the nonparametric component achieves the optimal convergence rate. Simulation studies are carried out to investigate the performance of the proposed estimates. For illustration purposes, the method is applied to a real dataset from a study of the calcification of the hydrogel intraocular lenses, a complication of cataract treatment.展开更多
In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be est...In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be estimated simultaneously by the proposed method while the feature of longitudinal data is considered. The existence, strong consistency and asymptotic normality of the estimators are proved under suitable conditions. A simulation study is conducted to investigate the finite sample performance of the proposed method. Our approach can also be used to study the pure single-index model for longitudinal data.展开更多
The paper considers a multivariate partially linear model under independent errors,and investigates the asymptotic bias and variance-covariance for parametric component βand nonparametric component F(·)by the ...The paper considers a multivariate partially linear model under independent errors,and investigates the asymptotic bias and variance-covariance for parametric component βand nonparametric component F(·)by the GJS estimator and Kernel estimation.展开更多
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop...This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.展开更多
In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average varianc...In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average variance with adaptive l1 penalty. Implementation algorithm is given. Under some regular conditions, we demonstrate the oracle properties of aLASSO procedure for PLSIM. Simulations are used to investigate the effectiveness of the proposed method for variable selection of PLSIM.展开更多
In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear met...In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear method, and then estimate the parameters by the two stage method. The test statistic under the null hypothesis is calculated, and it is shown to be asymptotically normal.展开更多
In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus...In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.展开更多
Variable selection plays an important role in high-dimensional data analysis.But the high-dimensional data often induces the strongly correlated variables problem,which should be properly handled.In this paper,we prop...Variable selection plays an important role in high-dimensional data analysis.But the high-dimensional data often induces the strongly correlated variables problem,which should be properly handled.In this paper,we propose Elastic Net procedure for partially linear models and prove the group effect of its estimate.A simulation study shows that the Elastic Net procedure deals with the strongly correlated variables problem better than the Lasso,ALasso and the Ridge do.Based on the real world data study,we can get that the Elastic Net procedure is particularly useful when the number of predictors pffis much bigger than the sample size n.展开更多
We propose the test statistic to check whether the nonpararnetric functions in two partially linear models are equality or not in this paper. We estimate the nonparametric function both in null hypothesis and the alte...We propose the test statistic to check whether the nonpararnetric functions in two partially linear models are equality or not in this paper. We estimate the nonparametric function both in null hypothesis and the alternative by the local linear method, where we ignore the parametric components, and then estimate the parameters by the two stage method. The test statistic is derived, and it is shown to be asymptotically normal under the null hypothesis.展开更多
文摘Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobserved error. In Ref[1,2], it wes proved that the estimator for the asymptotic variance of βn(βn) is consistent. In this paper, we establish the limit distribution and the law of the iterated logarithm for,En, and obtain the convergest rates for En and the strong uniform convergent rates for gn(gn).
文摘Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3).
基金The talent research fund launched (3004-893325) of Dalian University of Technologythe NNSF (10271049) of China.
文摘This article concerded with a semiparametric generalized partial linear model (GPLM) with the type Ⅱ censored data. A sieve maximum likelihood estimator (MLE) is proposed to estimate the parameter component, allowing exploration of the nonlinear relationship between a certain covariate and the response function. Asymptotic properties of the proposed sieve MLEs are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. Moreover, the estimators of the unknown parameters are asymptotically normal and efficient, and the estimator of the nonparametric function has an optimal convergence rate.
基金supported by the National Natural Science Foundation of China under Grant Nos.11971421,71925007,72091212,and 12288201Yunling Scholar Research Fund of Yunnan Province under Grant No.YNWR-YLXZ-2018-020+1 种基金the CAS Project for Young Scientists in Basic Research under Grant No.YSBR-008the Start-Up Grant from Kunming University of Science and Technology under Grant No.KKZ3202207024.
文摘Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under independent errors,few authors have considered model averaging for semiparametric models with correlated errors.In this paper,the authors offer an optimal model averaging method to improve the prediction in partially linear model for longitudinal data.The model averaging weights are obtained by minimizing criterion,which is an unbiased estimator of the expected in-sample squared error loss plus a constant.Asymptotic properties,including asymptotic optimality and consistency of averaging weights,are established under two scenarios:(i)All candidate models are misspecified;(ii)Correct models are available in the candidate set.Simulation studies and an empirical example show that the promise of the proposed procedure over other competitive methods.
基金the National Natural Science Foundation of China (Grant Nos. 10671106, 10771017)
文摘For partial linear model Y = X τ β 0 + g 0(T) + ∈ with unknown β 0 ∈ ? d and an unknown smooth function g 0, this paper considers the Huber-Dutter estimators of β 0, scale σ for the errors and the function g 0 approximated by the smoothing B-spline functions, respectively. Under some regularity conditions, the Huber-Dutter estimators of β 0 and σ are shown to be asymptotically normal with the rate of convergence n ?1/2 and the B-spline Huber-Dutter estimator of g 0 achieves the optimal rate of convergence in nonparametric regression. A simulation study and two examples demonstrate that the Huber-Dutter estimator of β 0 is competitive with its M-estimator without scale parameter and the ordinary least square estimator.
文摘This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author also found that the estimators show remarkable in the small sample case yet.
基金This research is supported by the National Social Science Foundation of China under Grant No. 11CTJ004, the National Natural Science Foundation of China under Grant Nos. 10871013 and 10871217, the National Natural Science Foundation of Beijing under Grant No. 1102008, the Research Foundation of Chongqing Municipal Education Commission under Grant Nos. KJ110720 and KJ100726, and the Natural Science Foundation of Guangxi under Grant No. 2010GXNSFB013051.
文摘A partial linear model with missing response variables and error-prone covariates is considered. The imputation approach is developed to estimate the regression coefficients and the nonparametric function. The proposed parametric estimators are shown to be asymptotically normal, and the estimators for the nonparametric part are proved to converge at an optimal rate. To construct confidence regions for the regression coefficients and the nonparametric function, respectively, the authors also propose the empirical-likelihood-based statistics and investigate the limit distributions of the empirical likelihood ratios. The simulation study is conducted to compare the finite sample behavior for the proposed estimators. An application to an AIDS dataset is illustrated.
基金Supported by The National Natural Science Foundation of China (No. 10231030 )Beijing Normal University Youth Foundation (No. 104951).
文摘For partial linear model Y = X~τβ_0 + g_0(T) + ε with unknown β_0 ∈ R^dand an unknown smooth function g_0, this paper considers the Huber-Dutter estimators of β_0, scaleσ for the errors and the function g_0 respectively, in which the smoothing B-spline function isused. Under some regular conditions, it is shown that the Huber-Dutter estimators of β_0 and σ areasymptotically normal with convergence rate n^(-1/2) and the B-spline Huber-Dutter estimator of g_0achieves the optimal convergence rate in nonparametric regression. A simulation study demonstratesthat the Huber-Dutter estimator of β_0 is competitive with its M-estimator without scale parameterand the ordinary least square estimator. An example is presented after the simulation study.
基金the Natural Science Foundation of China(10371042,10671038)
文摘In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under some regular conditions, the asymptotic properties of the estimators are obtained. To avoid the computation of high-dimensional integral, a robust Monte Carlo Newton-Raphson algorithm is used. Some simulations are carried out to study the performance of the proposed robust estimators. In addition, the authors also study the robustness and the efficiency of the proposed estimators by simulation. Finally, two real longitudinal data sets are analyzed.
文摘In this paper, under some fairly general conditions, a first-order Edgeworth expansion for the standardized statistic of βin partial linear models is given, then a non-residual type of consistent estimation for the error variance is constructed, and finally an Edgeworth expansion for the corresponding studentized version is presented.
文摘Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(). Baed on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some aspoptotic results about estimates.
基金This research is supported in part by the National Natural Science Foundation of. China under Grant No. 10801133.
文摘Current status data often arise in survival analysis and reliability studies, when a continuous response is reduced to an indicator of whether the response is greater or less than an observed random threshold value. This article considers a partial linear model with current status data. A sieve least squares estimator is proposed to estimate both the regression parameters and the nonparametric function. This paper shows, under some mild condition, that the estimators are strong consistent. Moreover, the parameter estimators are normally distributed, while the nonparametric component achieves the optimal convergence rate. Simulation studies are carried out to investigate the performance of the proposed estimates. For illustration purposes, the method is applied to a real dataset from a study of the calcification of the hydrogel intraocular lenses, a complication of cataract treatment.
基金Supported by the National Natural Science Foundation of China (10571008)the Natural Science Foundation of Henan (092300410149)the Core Teacher Foundationof Henan (2006141)
文摘In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be estimated simultaneously by the proposed method while the feature of longitudinal data is considered. The existence, strong consistency and asymptotic normality of the estimators are proved under suitable conditions. A simulation study is conducted to investigate the finite sample performance of the proposed method. Our approach can also be used to study the pure single-index model for longitudinal data.
基金Supported by the Anhui Provincial Natural Science Foundation(11040606M04) Supported by the National Natural Science Foundation of China(10871001,10971097)
文摘The paper considers a multivariate partially linear model under independent errors,and investigates the asymptotic bias and variance-covariance for parametric component βand nonparametric component F(·)by the GJS estimator and Kernel estimation.
基金supported by the National Natural Science Funds for Distinguished Young Scholar (70825004)National Natural Science Foundation of China (NSFC) (10731010 and 10628104)+3 种基金the National Basic Research Program (2007CB814902)Creative Research Groups of China (10721101)Leading Academic Discipline Program, the 10th five year plan of 211 Project for Shanghai University of Finance and Economics211 Project for Shanghai University of Financeand Economics (the 3rd phase)
文摘This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.
文摘In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average variance with adaptive l1 penalty. Implementation algorithm is given. Under some regular conditions, we demonstrate the oracle properties of aLASSO procedure for PLSIM. Simulations are used to investigate the effectiveness of the proposed method for variable selection of PLSIM.
文摘In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear method, and then estimate the parameters by the two stage method. The test statistic under the null hypothesis is calculated, and it is shown to be asymptotically normal.
文摘In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.
基金Supported by National Natural Science Foundation of China(No.71462002)the Project for Teaching Reform of Guangxi(GXZZJG2017B084)the Project for Fostering Distinguished Youth Scholars of Guangxi(2020KY50012)。
文摘Variable selection plays an important role in high-dimensional data analysis.But the high-dimensional data often induces the strongly correlated variables problem,which should be properly handled.In this paper,we propose Elastic Net procedure for partially linear models and prove the group effect of its estimate.A simulation study shows that the Elastic Net procedure deals with the strongly correlated variables problem better than the Lasso,ALasso and the Ridge do.Based on the real world data study,we can get that the Elastic Net procedure is particularly useful when the number of predictors pffis much bigger than the sample size n.
文摘We propose the test statistic to check whether the nonpararnetric functions in two partially linear models are equality or not in this paper. We estimate the nonparametric function both in null hypothesis and the alternative by the local linear method, where we ignore the parametric components, and then estimate the parameters by the two stage method. The test statistic is derived, and it is shown to be asymptotically normal under the null hypothesis.