This paper is concerned with the oscillation of nonlinear partial difference equations with continuous variables and the corresponding dual equations. Several sufficientconditions are obtained for the oscillation of t...This paper is concerned with the oscillation of nonlinear partial difference equations with continuous variables and the corresponding dual equations. Several sufficientconditions are obtained for the oscillation of these equations.展开更多
This paper is concerned with hyperbolic type delay partial difference equation and elliptic type equation where a, b,p, qi are real numbers, hi and h are nonnegative integers, a, b,p ≠ 0 and not all of qi are zero fo...This paper is concerned with hyperbolic type delay partial difference equation and elliptic type equation where a, b,p, qi are real numbers, hi and h are nonnegative integers, a, b,p ≠ 0 and not all of qi are zero for 1 ≤ i ≤ u. Sufficient and necessary conditions for all solutions of the equation mentioned above to be oscillatory are obtained.展开更多
In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and D...In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.展开更多
Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and...Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and k is a positive constant. Only solutions which are positive for n ≥ 0 are considered. We obtain a new sufficient for all positive solutions of (1) to oscillate about k which contains the corresponding result in [2] when i = 1.展开更多
In this paper, we are concerned with the second order neutral difference equation with continuous variable. Using the integral transformation and generalized Riccati transformation, we obtain some oscillation criteria.
The oscillations of the advanced difference equationsxn - xn-1 - p(n)xn+k = 0, n ≥ 0, (*)andXn - Xn-1 - ∑i=1mpi(n)xn+ki=0, n ≥0, (**)are investigated, where p(n),pi(n)(i = 1,2,..., m)...The oscillations of the advanced difference equationsxn - xn-1 - p(n)xn+k = 0, n ≥ 0, (*)andXn - Xn-1 - ∑i=1mpi(n)xn+ki=0, n ≥0, (**)are investigated, where p(n),pi(n)(i = 1,2,..., m) are nonnegative real numbers. First. a sufficienet condition for the oscillation of equation (*) is obtained, then the result is generalized to the equation (**). At last, an example is given to illustrate the advantages of our results. Our results are new.展开更多
We prove a global estimate in the Sobolev spaces with variable exponents to the solution of a class of higher-order divergence parabolic equations with measurable coefficients over the non-smooth domains.Here,it is ma...We prove a global estimate in the Sobolev spaces with variable exponents to the solution of a class of higher-order divergence parabolic equations with measurable coefficients over the non-smooth domains.Here,it is mainly assumed that the coefficients are allowed to be merely measurable in one of the spatial variables and have a small BMO quasi-norm in the other variables at a sufficiently small scale,while the boundary of the underlying domain belongs to the so-called Reifenberg flatness.This is a natural outgrowth of Dong-Kim-Zhang’s papers[1,2]from the W^(m,p)-regularity to the W^(m,p(t,x))-regularity for such higher-order parabolic equations with merely measurable coefficients with Reifenberg flat domain which is beyond the Lipschitz domain with small Lipschitz constant.展开更多
Stochastic partial differential equations (SPDEs) describe the dynamics of stochastic processes depending on space-time continuum. These equations have been widely used to model many applications in engineering and ma...Stochastic partial differential equations (SPDEs) describe the dynamics of stochastic processes depending on space-time continuum. These equations have been widely used to model many applications in engineering and mathematical sciences. In this paper we use three finite difference schemes in order to approximate the solution of stochastic parabolic partial differential equations. The conditions of the mean square convergence of the numerical solution are studied. Some case studies are discussed.展开更多
The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference ...The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given.展开更多
The aim of this paper is to establish some new discrete inequalities in two independent variables which can be used as handy tools.in the theory of certain fourth order partial finite difference equations. The analys...The aim of this paper is to establish some new discrete inequalities in two independent variables which can be used as handy tools.in the theory of certain fourth order partial finite difference equations. The analysis used in the proof is elementary and the results established provide new estimates for these types of inequalities.AMS (MOS) Subject Classification (1991 ): Primary 26D15.展开更多
The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is construc...The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too.展开更多
基金Supported by the NSF of China(60174010)Supported by NSF of Hebei Province(102160)Supported by NS of Education Office in Heibei Province(2004123)
文摘This paper is concerned with the oscillation of nonlinear partial difference equations with continuous variables and the corresponding dual equations. Several sufficientconditions are obtained for the oscillation of these equations.
文摘This paper is concerned with hyperbolic type delay partial difference equation and elliptic type equation where a, b,p, qi are real numbers, hi and h are nonnegative integers, a, b,p ≠ 0 and not all of qi are zero for 1 ≤ i ≤ u. Sufficient and necessary conditions for all solutions of the equation mentioned above to be oscillatory are obtained.
基金the Natural Science Foundation of Hunan Province(10471086)the Science Research Foundation of Administration of Education of Hunan Province(07C164)
文摘In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.
文摘Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and k is a positive constant. Only solutions which are positive for n ≥ 0 are considered. We obtain a new sufficient for all positive solutions of (1) to oscillate about k which contains the corresponding result in [2] when i = 1.
文摘In this paper, we are concerned with the second order neutral difference equation with continuous variable. Using the integral transformation and generalized Riccati transformation, we obtain some oscillation criteria.
基金Project supported by NNSFC (No.10071022), Mathematical Tianyuan Foundation of China (No.TY10026002-01-05-03) and Shanghai Priority Academic Discipline.
文摘The oscillations of the advanced difference equationsxn - xn-1 - p(n)xn+k = 0, n ≥ 0, (*)andXn - Xn-1 - ∑i=1mpi(n)xn+ki=0, n ≥0, (**)are investigated, where p(n),pi(n)(i = 1,2,..., m) are nonnegative real numbers. First. a sufficienet condition for the oscillation of equation (*) is obtained, then the result is generalized to the equation (**). At last, an example is given to illustrate the advantages of our results. Our results are new.
基金supported by the National Natural Science Foundation of China(Grant Nos.11901429 and 12071021).
文摘We prove a global estimate in the Sobolev spaces with variable exponents to the solution of a class of higher-order divergence parabolic equations with measurable coefficients over the non-smooth domains.Here,it is mainly assumed that the coefficients are allowed to be merely measurable in one of the spatial variables and have a small BMO quasi-norm in the other variables at a sufficiently small scale,while the boundary of the underlying domain belongs to the so-called Reifenberg flatness.This is a natural outgrowth of Dong-Kim-Zhang’s papers[1,2]from the W^(m,p)-regularity to the W^(m,p(t,x))-regularity for such higher-order parabolic equations with merely measurable coefficients with Reifenberg flat domain which is beyond the Lipschitz domain with small Lipschitz constant.
文摘Stochastic partial differential equations (SPDEs) describe the dynamics of stochastic processes depending on space-time continuum. These equations have been widely used to model many applications in engineering and mathematical sciences. In this paper we use three finite difference schemes in order to approximate the solution of stochastic parabolic partial differential equations. The conditions of the mean square convergence of the numerical solution are studied. Some case studies are discussed.
文摘The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given.
文摘The aim of this paper is to establish some new discrete inequalities in two independent variables which can be used as handy tools.in the theory of certain fourth order partial finite difference equations. The analysis used in the proof is elementary and the results established provide new estimates for these types of inequalities.AMS (MOS) Subject Classification (1991 ): Primary 26D15.
文摘The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too.