Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the secon...Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.展开更多
In this paper,an orthogonal-directional forward diffusion Partial Differential Equation(PDE) image inpainting and denoising model which processes image based on variation problem is proposed.The novel model restores t...In this paper,an orthogonal-directional forward diffusion Partial Differential Equation(PDE) image inpainting and denoising model which processes image based on variation problem is proposed.The novel model restores the damaged information and smoothes the noise in image si-multaneously.The model is morphological invariant which processes image based on the geometrical property.The regularization item of it diffuses along and cross the isophote,and then the known image information is transported into the target region through two orthogonal directions.The cross isophote diffusion part is the TV(Total Variation) equation and the along isophote diffusion part is the inviscid Helmholtz vorticity equation.The equivalence between the Helmholtz equation and the inpainting PDEs is proved.The model with the fidelity item which is used in the whole image domain denoises while preserving edges.So the novel model could inpaint and denoise simultaneously.Both theoretical analysis and experiments have verified the validity of the novel model proposed in this paper.展开更多
基金The National Natural Science Foundation of China(No.60972001)the National Key Technology R&D Program of China during the 11th Five-Year Period(No.2009BAG13A06)
文摘Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(No.60472033, No.60672062)the National Grand Fundamental Research 973 Program of China(No. 2004CB318005)the Technological Innovation Fund of Excellent Doctorial Candidate of Beijing Jiaotong University(No.48026)
文摘In this paper,an orthogonal-directional forward diffusion Partial Differential Equation(PDE) image inpainting and denoising model which processes image based on variation problem is proposed.The novel model restores the damaged information and smoothes the noise in image si-multaneously.The model is morphological invariant which processes image based on the geometrical property.The regularization item of it diffuses along and cross the isophote,and then the known image information is transported into the target region through two orthogonal directions.The cross isophote diffusion part is the TV(Total Variation) equation and the along isophote diffusion part is the inviscid Helmholtz vorticity equation.The equivalence between the Helmholtz equation and the inpainting PDEs is proved.The model with the fidelity item which is used in the whole image domain denoises while preserving edges.So the novel model could inpaint and denoise simultaneously.Both theoretical analysis and experiments have verified the validity of the novel model proposed in this paper.