Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi...Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi166) and wild type (Zhonghua 11) rice. Furthermore, rice lines transformed with protein gene (OsTCTP) and regulation gene (Osmi166) were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000-8 000 cm-1 and 4 000-10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice.展开更多
The Fraction of Absorbed Photosynthetically Active Radiation(FPAR) is an important indicator of the primary productivity of vegetation. FPAR is often used to estimate the assimilation of carbon dioxide in vegetation. ...The Fraction of Absorbed Photosynthetically Active Radiation(FPAR) is an important indicator of the primary productivity of vegetation. FPAR is often used to estimate the assimilation of carbon dioxide in vegetation. Based on MOD15 A2 H/FPAR data product, the temporal and spatial variation characteristics and variation trend of FPAR in different vegetation types in 2001 to 2018 were analyzed in the Hengduan Mountains. The response of FPAR to climate change was investigated by using Pearson correlation analytical method and partial least squares regression analysis. Results showed that the FPAR in Hengduan Mountains presented an increasing trend with time. Spatially, it was high in the south and low in the north, and it also showed obvious vertical zonality by elevation gradient.The vegetation FPAR was found to be positively correlated with air temperature and sunshine duration but negatively correlated with precipitation. Partial least squares regression analysis showed that the influence of sunshine duration on vegetation FPAR in Hengduan Mountains was stronger than that of air temperature and precipitation.展开更多
基金supported by the projects under the Innovation Team of the Safety Standards and Testing Technology for Agricultural Products of Zhejiang Province, China (Grant No.2010R50028)the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period (Grant No.2006BAK02A18)
文摘Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi166) and wild type (Zhonghua 11) rice. Furthermore, rice lines transformed with protein gene (OsTCTP) and regulation gene (Osmi166) were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000-8 000 cm-1 and 4 000-10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice.
基金supported by the National Natural Science Foundation of China (41801099)the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0307, 2019QZKK0301)。
文摘The Fraction of Absorbed Photosynthetically Active Radiation(FPAR) is an important indicator of the primary productivity of vegetation. FPAR is often used to estimate the assimilation of carbon dioxide in vegetation. Based on MOD15 A2 H/FPAR data product, the temporal and spatial variation characteristics and variation trend of FPAR in different vegetation types in 2001 to 2018 were analyzed in the Hengduan Mountains. The response of FPAR to climate change was investigated by using Pearson correlation analytical method and partial least squares regression analysis. Results showed that the FPAR in Hengduan Mountains presented an increasing trend with time. Spatially, it was high in the south and low in the north, and it also showed obvious vertical zonality by elevation gradient.The vegetation FPAR was found to be positively correlated with air temperature and sunshine duration but negatively correlated with precipitation. Partial least squares regression analysis showed that the influence of sunshine duration on vegetation FPAR in Hengduan Mountains was stronger than that of air temperature and precipitation.