This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop...This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.展开更多
In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero c...In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure.展开更多
We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric...We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric and the nonparametric components proposed. In the final of this paper, as a result, we got the variance decomposition of the model and establish the asymptotic convergence rate for estimator.展开更多
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l...In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.展开更多
For the functional partially linear models including flexible nonparametric part and functional linear part,the estimators of the nonlinear function and the slope function have been studied in existing literature.How ...For the functional partially linear models including flexible nonparametric part and functional linear part,the estimators of the nonlinear function and the slope function have been studied in existing literature.How to test the correlation between response and explanatory variables,however,still seems to be missing.Therefore,a test procedure for testing the linearity in the functional partially linear models will be proposed in this paper.A test statistic is constructed based on the existing estimators of the nonlinear and the slope functions.Further,we prove that the approximately asymptotic distribution of the proposed statistic is a chi-squared distribution under some regularity conditions.Finally,some simulation studies and a real data application are presented to demonstrate the performance of the proposed test statistic.展开更多
In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null d...In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null distribution follows a distribution, with the scale constant and the number of degree of freedom being independent of nuisance parameters or functions, which is called the wilks phenomenon. Both simulated and real data examples are given to illustrate the performance of the testing approach.展开更多
In this article, we propose a generalized empirical likelihood inference for the parametric component in semiparametric generalized partially linear models with longitudinal data. Based on the extended score vector, a...In this article, we propose a generalized empirical likelihood inference for the parametric component in semiparametric generalized partially linear models with longitudinal data. Based on the extended score vector, a generalized empirical likelihood ratios function is defined, which integrates the within-cluster?correlation meanwhile avoids direct estimating the nuisance parameters in the correlation matrix. We show that the proposed statistics are asymptotically?Chi-squared under some suitable conditions, and hence it can be used to construct the confidence region of parameters. In addition, the maximum empirical likelihood estimates of parameters and the corresponding asymptotic normality are obtained. Simulation studies demonstrate the performance of the proposed method.展开更多
This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-sco...This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-score function [12] in a window around each time point. The proposed method can be easily implemented, and the resulting estimators are shown to be consistent and asymptotically normal with easily estimated variances. The simulation studies show that our estimation procedure is reliable and useful.展开更多
The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac...The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method.展开更多
The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic ...The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power.展开更多
In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing respo...In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.展开更多
The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some sp...The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some spurious covariates in the linear part, a penalized profile least squares estimation is suggested with the assistance from smoothly clipped absolute deviation penalty. However, the estimator is often biased due to the existence of measurement errors, a bias correction is proposed such that the estimation consistency with the oracle property is proved. Second, based on the estimator, a test statistic is constructed to check a linear hypothesis of the parameters and its asymptotic properties are studied. We prove that the existence of measurement errors causes intractability of the limiting null distribution that requires a Monte Carlo approximation and the absence of the errors can lead to a chi-square limit. Furthermore, confidence regions of the parameter of interest can also be constructed. Simulation studies and a real data example are conducted to examine the performance of our estimators and test statistic.展开更多
Semiparametric models with diverging number of predictors arise in many contemporary scientific areas. Variable selection for these models consists of two components: model selection for non-parametric components and...Semiparametric models with diverging number of predictors arise in many contemporary scientific areas. Variable selection for these models consists of two components: model selection for non-parametric components and selection of significant variables for the parametric portion. In this paper, we consider a variable selection procedure by combining basis function approximation with SCAD penalty. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of tuning parameters, we establish the consistency and sparseness of this procedure.展开更多
This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear ...This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable.A sieve M-estimation method is proposed and the asymptotic properties of the proposed estimators are discussed.Our main object is to estimate the nonparametric component and the unknown parameters simultaneously.It is easier to compute and the required computation burden is much less than the existing two-stage estimation method.Furthermore,the sieve M-estimation is robust in the presence of outliers if we choose appropriate ρ(·).Under some mild conditions,the estimators are shown to be strongly consistent;the convergence rate of the estimator for the unknown nonparametric component is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed.Numerical experiments are carried out to investigate the performance of the proposed method.展开更多
Partially linear varying coefficient model is a generalization of partially linear model and varying coefficient model and is frequently used in statistical modeling. In this paper, we construct estimators of the para...Partially linear varying coefficient model is a generalization of partially linear model and varying coefficient model and is frequently used in statistical modeling. In this paper, we construct estimators of the parametric and nonparametric components by Profile least-squares procedure which is based on local linear smoothing. The resulting estimators are shown to be asymptotically normal with heteroscedastic error.展开更多
This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary...This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. One of our main objects is to estimate nonparametric component and the unknowen parameters simultaneously. It is easier to compute, and the required computation burden is much less than that of the existing two-stage estimation method. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained, and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are carried out to investigate the performance of the proposed method.展开更多
This paper studies estimation and serial correlation test of a semiparametric varying-coefficient partially linear EV model of the form Y = X^Tβ +Z^Tα(T) +ε,ξ = X + η with the identifying condition E[(ε,...This paper studies estimation and serial correlation test of a semiparametric varying-coefficient partially linear EV model of the form Y = X^Tβ +Z^Tα(T) +ε,ξ = X + η with the identifying condition E[(ε,η^T)^T] =0, Cov[(ε,η^T)^T] = σ^2Ip+1. The estimators of interested regression parameters /3 , and the model error variance σ2, as well as the nonparametric components α(T), are constructed. Under some regular conditions, we show that the estimators of the unknown vector β and the unknown parameter σ2 are strongly consistent and asymptotically normal and that the estimator of α(T) achieves the optimal strong convergence rate of the usual nonparametric regression. Based on these estimators and asymptotic properties, we propose the VN,p test statistic and empirical log-likelihood ratio statistic for testing serial correlation in the model. The proposed statistics are shown to have asymptotic normal or chi-square distributions under the null hypothesis of no serial correlation. Some simulation studies are conducted to illustrate the finite sample performance of the proposed tests.展开更多
The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the l...The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the local linear method. In this paper its inference is addressed. Based on these estimates, the generalized like- lihood ratio test is established. Under the null hypotheses the normalized test statistic follows a x2-distribution asymptotically, with the scale constant and the degrees of freedom being independent of the nuisance param- eters. This is the Wilks phenomenon. Furthermore its asymptotic power is also derived, which achieves the optimal rate of convergence for nonparametric hypotheses testing. A simulation and a real example are used to evaluate the performances of the testing procedures empirically.展开更多
基金supported by the National Natural Science Funds for Distinguished Young Scholar (70825004)National Natural Science Foundation of China (NSFC) (10731010 and 10628104)+3 种基金the National Basic Research Program (2007CB814902)Creative Research Groups of China (10721101)Leading Academic Discipline Program, the 10th five year plan of 211 Project for Shanghai University of Finance and Economics211 Project for Shanghai University of Financeand Economics (the 3rd phase)
文摘This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.
文摘In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure.
文摘We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric and the nonparametric components proposed. In the final of this paper, as a result, we got the variance decomposition of the model and establish the asymptotic convergence rate for estimator.
文摘In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.
基金supported by the National Natural Science Foundation of China(No.12271370)。
文摘For the functional partially linear models including flexible nonparametric part and functional linear part,the estimators of the nonlinear function and the slope function have been studied in existing literature.How to test the correlation between response and explanatory variables,however,still seems to be missing.Therefore,a test procedure for testing the linearity in the functional partially linear models will be proposed in this paper.A test statistic is constructed based on the existing estimators of the nonlinear and the slope functions.Further,we prove that the approximately asymptotic distribution of the proposed statistic is a chi-squared distribution under some regularity conditions.Finally,some simulation studies and a real data application are presented to demonstrate the performance of the proposed test statistic.
文摘In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null distribution follows a distribution, with the scale constant and the number of degree of freedom being independent of nuisance parameters or functions, which is called the wilks phenomenon. Both simulated and real data examples are given to illustrate the performance of the testing approach.
文摘In this article, we propose a generalized empirical likelihood inference for the parametric component in semiparametric generalized partially linear models with longitudinal data. Based on the extended score vector, a generalized empirical likelihood ratios function is defined, which integrates the within-cluster?correlation meanwhile avoids direct estimating the nuisance parameters in the correlation matrix. We show that the proposed statistics are asymptotically?Chi-squared under some suitable conditions, and hence it can be used to construct the confidence region of parameters. In addition, the maximum empirical likelihood estimates of parameters and the corresponding asymptotic normality are obtained. Simulation studies demonstrate the performance of the proposed method.
基金supported by the Fundamental Research Funds for the Central Universities (QN0914)
文摘This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-score function [12] in a window around each time point. The proposed method can be easily implemented, and the resulting estimators are shown to be consistent and asymptotically normal with easily estimated variances. The simulation studies show that our estimation procedure is reliable and useful.
文摘The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method.
基金supported by the National Natural Science Foundation of China under Grant Nos. 10871217 and 40574003the Science and Technology Project of Chongqing Education Committee under Grant No. KJ080609+1 种基金the Doctor's Start-up Research Fund under Grant No. 08-52204the Youth Science Research Fund of Chongging Technology and Business University under Grant No. 0852008
文摘The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power.
基金Supported by National Natural Science Foundation of China (Grant No. 10871013), Natural Science Foundation of Beijing (Grant No. 1072004), and Natural Science Foundation of Guangxi Province (Grant No. 2010GXNSFB013051)
文摘In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401006, 11671299 and 11671042)a grant from the University Grants Council of Hong Kong+1 种基金the China Postdoctoral Science Foundation (Grant No. 2017M611083)the National Statistical Science Research Program of China (Grant No. 2015LY55)
文摘The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some spurious covariates in the linear part, a penalized profile least squares estimation is suggested with the assistance from smoothly clipped absolute deviation penalty. However, the estimator is often biased due to the existence of measurement errors, a bias correction is proposed such that the estimation consistency with the oracle property is proved. Second, based on the estimator, a test statistic is constructed to check a linear hypothesis of the parameters and its asymptotic properties are studied. We prove that the existence of measurement errors causes intractability of the limiting null distribution that requires a Monte Carlo approximation and the absence of the errors can lead to a chi-square limit. Furthermore, confidence regions of the parameter of interest can also be constructed. Simulation studies and a real data example are conducted to examine the performance of our estimators and test statistic.
基金Supported by the National Natural Science Foundation of China (No. 10871177)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090101110020)
文摘Semiparametric models with diverging number of predictors arise in many contemporary scientific areas. Variable selection for these models consists of two components: model selection for non-parametric components and selection of significant variables for the parametric portion. In this paper, we consider a variable selection procedure by combining basis function approximation with SCAD penalty. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of tuning parameters, we establish the consistency and sparseness of this procedure.
基金supported by Natural Natural Science Foundation of China (Grant Nos.10771017,10901020)Key Project of Chinese Ministry of Education (Grant No.309007)
文摘This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable.A sieve M-estimation method is proposed and the asymptotic properties of the proposed estimators are discussed.Our main object is to estimate the nonparametric component and the unknown parameters simultaneously.It is easier to compute and the required computation burden is much less than the existing two-stage estimation method.Furthermore,the sieve M-estimation is robust in the presence of outliers if we choose appropriate ρ(·).Under some mild conditions,the estimators are shown to be strongly consistent;the convergence rate of the estimator for the unknown nonparametric component is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed.Numerical experiments are carried out to investigate the performance of the proposed method.
基金the National Natural Science Foundation of China (No.10431010)
文摘Partially linear varying coefficient model is a generalization of partially linear model and varying coefficient model and is frequently used in statistical modeling. In this paper, we construct estimators of the parametric and nonparametric components by Profile least-squares procedure which is based on local linear smoothing. The resulting estimators are shown to be asymptotically normal with heteroscedastic error.
基金Supported by National Natural Science Foundation of China (Grant Nos.10771017,10971015,10901020)Key Project of MOE,PRC (Grant No.309007)
文摘This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. One of our main objects is to estimate nonparametric component and the unknowen parameters simultaneously. It is easier to compute, and the required computation burden is much less than that of the existing two-stage estimation method. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained, and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are carried out to investigate the performance of the proposed method.
基金Supported by the National Natural Science Foundation of China (No.40574003) the National Natural Science of Hunan (NO.03JJY3065).
文摘This paper studies estimation and serial correlation test of a semiparametric varying-coefficient partially linear EV model of the form Y = X^Tβ +Z^Tα(T) +ε,ξ = X + η with the identifying condition E[(ε,η^T)^T] =0, Cov[(ε,η^T)^T] = σ^2Ip+1. The estimators of interested regression parameters /3 , and the model error variance σ2, as well as the nonparametric components α(T), are constructed. Under some regular conditions, we show that the estimators of the unknown vector β and the unknown parameter σ2 are strongly consistent and asymptotically normal and that the estimator of α(T) achieves the optimal strong convergence rate of the usual nonparametric regression. Based on these estimators and asymptotic properties, we propose the VN,p test statistic and empirical log-likelihood ratio statistic for testing serial correlation in the model. The proposed statistics are shown to have asymptotic normal or chi-square distributions under the null hypothesis of no serial correlation. Some simulation studies are conducted to illustrate the finite sample performance of the proposed tests.
基金supported in part by National Natural Science Foundation of China(11171112,11201190)Doctoral Fund of Ministry of Education of China(20130076110004)+1 种基金Program of Shanghai Subject Chief Scientist(14XD1401600)the 111 Project of China(B14019)
文摘The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the local linear method. In this paper its inference is addressed. Based on these estimates, the generalized like- lihood ratio test is established. Under the null hypotheses the normalized test statistic follows a x2-distribution asymptotically, with the scale constant and the degrees of freedom being independent of the nuisance param- eters. This is the Wilks phenomenon. Furthermore its asymptotic power is also derived, which achieves the optimal rate of convergence for nonparametric hypotheses testing. A simulation and a real example are used to evaluate the performances of the testing procedures empirically.