In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be est...In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be estimated simultaneously by the proposed method while the feature of longitudinal data is considered. The existence, strong consistency and asymptotic normality of the estimators are proved under suitable conditions. A simulation study is conducted to investigate the finite sample performance of the proposed method. Our approach can also be used to study the pure single-index model for longitudinal data.展开更多
This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author als...This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author also found that the estimators show remarkable in the small sample case yet.展开更多
In this article, we propose a generalized empirical likelihood inference for the parametric component in semiparametric generalized partially linear models with longitudinal data. Based on the extended score vector, a...In this article, we propose a generalized empirical likelihood inference for the parametric component in semiparametric generalized partially linear models with longitudinal data. Based on the extended score vector, a generalized empirical likelihood ratios function is defined, which integrates the within-cluster?correlation meanwhile avoids direct estimating the nuisance parameters in the correlation matrix. We show that the proposed statistics are asymptotically?Chi-squared under some suitable conditions, and hence it can be used to construct the confidence region of parameters. In addition, the maximum empirical likelihood estimates of parameters and the corresponding asymptotic normality are obtained. Simulation studies demonstrate the performance of the proposed method.展开更多
Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobse...Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobserved error. In Ref[1,2], it wes proved that the estimator for the asymptotic variance of βn(βn) is consistent. In this paper, we establish the limit distribution and the law of the iterated logarithm for,En, and obtain the convergest rates for En and the strong uniform convergent rates for gn(gn).展开更多
In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under so...In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under some regular conditions, the asymptotic properties of the estimators are obtained. To avoid the computation of high-dimensional integral, a robust Monte Carlo Newton-Raphson algorithm is used. Some simulations are carried out to study the performance of the proposed robust estimators. In addition, the authors also study the robustness and the efficiency of the proposed estimators by simulation. Finally, two real longitudinal data sets are analyzed.展开更多
We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric...We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric and the nonparametric components proposed. In the final of this paper, as a result, we got the variance decomposition of the model and establish the asymptotic convergence rate for estimator.展开更多
Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the est...Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3).展开更多
Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under inde...Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under independent errors,few authors have considered model averaging for semiparametric models with correlated errors.In this paper,the authors offer an optimal model averaging method to improve the prediction in partially linear model for longitudinal data.The model averaging weights are obtained by minimizing criterion,which is an unbiased estimator of the expected in-sample squared error loss plus a constant.Asymptotic properties,including asymptotic optimality and consistency of averaging weights,are established under two scenarios:(i)All candidate models are misspecified;(ii)Correct models are available in the candidate set.Simulation studies and an empirical example show that the promise of the proposed procedure over other competitive methods.展开更多
This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly ...This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly proposed moment conditions include those associated with the equidispersion, the Negbin I-type model and the stationarity. The GMM estimators are constructed incorporating the additional moment conditions. Some Monte Carlo experiments indicate that the GMM estimators incorporating the additional moment conditions perform well, compared to that using only the conventional moment conditions proposed by [2,3].展开更多
This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is...This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on different cluster. In order to avoid the biased results as well as improve the estimation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator (Group Lasso) to semiparametric model. That is to say, the method combines the approach of local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it can conduct nonparametric estimation and variable selection in a computationally efficient manner. According to the same criterion, the parametric estimators are also obtained. Additionally, for each cluster, the nonparametric and parametric estimators are derived, and then compute the weighted average per cluster as finally estimators. Moreover, the large sample properties of estimators are also derived respectively.展开更多
A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is prov...A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is proven to be asymptotically chi-squared, and the corresponding confidence regions for the pa- rameters of interest are then constructed. Also by the empirical likelihood ratio functions, we can obtain the maximum empirical likelihood estimates of the regression coefficients and the baseline function, and prove the asymptotic normality. The numerical results are conducted to compare the performance of the empirical likelihood and the normal approximation-based method, and a real example is analysed.展开更多
In this article, we study estimation of a partially specified spatial panel data linear regression with random-effects. Under the conditions of exogenous spatial weighting matrix and exogenous regressors, we give an i...In this article, we study estimation of a partially specified spatial panel data linear regression with random-effects. Under the conditions of exogenous spatial weighting matrix and exogenous regressors, we give an instrumental variable estimation. Under certain sufficient assumptions, we show that the proposed estimator for the finite dimensional parameter is root-N consistent and asymptotically normally distributed and the proposed estimator for the unknown function is consistent and asymptotically distributed. Consistent estimators for the asymptotic variance-covariance matrices of both the parametric and unknown components are provided. The Monte Carlo simulation results verify our theory and suggest that the approach has some practical value.展开更多
Based on the double penalized estimation method,a new variable selection procedure is proposed for partially linear models with longitudinal data.The proposed procedure can avoid the effects of the nonparametric estim...Based on the double penalized estimation method,a new variable selection procedure is proposed for partially linear models with longitudinal data.The proposed procedure can avoid the effects of the nonparametric estimator on the variable selection for the parameters components.Under some regularity conditions,the rate of convergence and asymptotic normality of the resulting estimators are established.In addition,to improve efficiency for regression coefficients,the estimation of the working covariance matrix is involved in the proposed iterative algorithm.Some simulation studies are carried out to demonstrate that the proposed method performs well.展开更多
We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are...We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are given. The strong convergence rates of the proposed estimators are obtained. In our estimation, the observation number of each subject will be completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.展开更多
This paper considers partial function linear models of the form Y =∫X(t)β(t)dt + g(T)with Y measured with error. The authors propose an estimation procedure when the basis functions are data driven, such as with fun...This paper considers partial function linear models of the form Y =∫X(t)β(t)dt + g(T)with Y measured with error. The authors propose an estimation procedure when the basis functions are data driven, such as with functional principal components. Estimators of β(t) and g(t) with the primary data and validation data are presented and some asymptotic results are given. Finite sample properties are investigated through some simulation study and a real data application.展开更多
In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing respo...In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.展开更多
基金Supported by the National Natural Science Foundation of China (10571008)the Natural Science Foundation of Henan (092300410149)the Core Teacher Foundationof Henan (2006141)
文摘In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be estimated simultaneously by the proposed method while the feature of longitudinal data is considered. The existence, strong consistency and asymptotic normality of the estimators are proved under suitable conditions. A simulation study is conducted to investigate the finite sample performance of the proposed method. Our approach can also be used to study the pure single-index model for longitudinal data.
文摘This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author also found that the estimators show remarkable in the small sample case yet.
文摘In this article, we propose a generalized empirical likelihood inference for the parametric component in semiparametric generalized partially linear models with longitudinal data. Based on the extended score vector, a generalized empirical likelihood ratios function is defined, which integrates the within-cluster?correlation meanwhile avoids direct estimating the nuisance parameters in the correlation matrix. We show that the proposed statistics are asymptotically?Chi-squared under some suitable conditions, and hence it can be used to construct the confidence region of parameters. In addition, the maximum empirical likelihood estimates of parameters and the corresponding asymptotic normality are obtained. Simulation studies demonstrate the performance of the proposed method.
文摘Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobserved error. In Ref[1,2], it wes proved that the estimator for the asymptotic variance of βn(βn) is consistent. In this paper, we establish the limit distribution and the law of the iterated logarithm for,En, and obtain the convergest rates for En and the strong uniform convergent rates for gn(gn).
基金the Natural Science Foundation of China(10371042,10671038)
文摘In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under some regular conditions, the asymptotic properties of the estimators are obtained. To avoid the computation of high-dimensional integral, a robust Monte Carlo Newton-Raphson algorithm is used. Some simulations are carried out to study the performance of the proposed robust estimators. In addition, the authors also study the robustness and the efficiency of the proposed estimators by simulation. Finally, two real longitudinal data sets are analyzed.
文摘We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric and the nonparametric components proposed. In the final of this paper, as a result, we got the variance decomposition of the model and establish the asymptotic convergence rate for estimator.
文摘Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3).
基金supported by the National Natural Science Foundation of China under Grant Nos.11971421,71925007,72091212,and 12288201Yunling Scholar Research Fund of Yunnan Province under Grant No.YNWR-YLXZ-2018-020+1 种基金the CAS Project for Young Scientists in Basic Research under Grant No.YSBR-008the Start-Up Grant from Kunming University of Science and Technology under Grant No.KKZ3202207024.
文摘Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under independent errors,few authors have considered model averaging for semiparametric models with correlated errors.In this paper,the authors offer an optimal model averaging method to improve the prediction in partially linear model for longitudinal data.The model averaging weights are obtained by minimizing criterion,which is an unbiased estimator of the expected in-sample squared error loss plus a constant.Asymptotic properties,including asymptotic optimality and consistency of averaging weights,are established under two scenarios:(i)All candidate models are misspecified;(ii)Correct models are available in the candidate set.Simulation studies and an empirical example show that the promise of the proposed procedure over other competitive methods.
文摘This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly proposed moment conditions include those associated with the equidispersion, the Negbin I-type model and the stationarity. The GMM estimators are constructed incorporating the additional moment conditions. Some Monte Carlo experiments indicate that the GMM estimators incorporating the additional moment conditions perform well, compared to that using only the conventional moment conditions proposed by [2,3].
文摘This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on different cluster. In order to avoid the biased results as well as improve the estimation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator (Group Lasso) to semiparametric model. That is to say, the method combines the approach of local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it can conduct nonparametric estimation and variable selection in a computationally efficient manner. According to the same criterion, the parametric estimators are also obtained. Additionally, for each cluster, the nonparametric and parametric estimators are derived, and then compute the weighted average per cluster as finally estimators. Moreover, the large sample properties of estimators are also derived respectively.
基金The first author was supported by the National Natural Science Foundation of China (Grant No. 10571008)the Natural Science Foundation of Beijing (Grant No. 1072004)+1 种基金the Science and Technology Development Project of Education Committee of Beijing City (Grant No. KM200510005009)The second author was supported by a grant of the Research Grant Council of Hong Kong (Grant No. HKBU7060/04P)
文摘A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is proven to be asymptotically chi-squared, and the corresponding confidence regions for the pa- rameters of interest are then constructed. Also by the empirical likelihood ratio functions, we can obtain the maximum empirical likelihood estimates of the regression coefficients and the baseline function, and prove the asymptotic normality. The numerical results are conducted to compare the performance of the empirical likelihood and the normal approximation-based method, and a real example is analysed.
基金supported by National Natural Science Foundation of China(Grant Nos.71371118,71471117)Plateau and Peak Disciplines of Shanghai-Business Management Research Team+3 种基金National Social Science Fund of China(Grant No.14BJY012)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.PCSIRTIRT13077)the State Key Program of National Natural Science of China(Grant No.71331006)supported by National Nature Science Foundation of China(Grant Nos.11101442,11471086)
文摘In this article, we study estimation of a partially specified spatial panel data linear regression with random-effects. Under the conditions of exogenous spatial weighting matrix and exogenous regressors, we give an instrumental variable estimation. Under certain sufficient assumptions, we show that the proposed estimator for the finite dimensional parameter is root-N consistent and asymptotically normally distributed and the proposed estimator for the unknown function is consistent and asymptotically distributed. Consistent estimators for the asymptotic variance-covariance matrices of both the parametric and unknown components are provided. The Monte Carlo simulation results verify our theory and suggest that the approach has some practical value.
基金Supported by National Natural Science Foundation of China(Grant No.11101119)the Training Program for Excellent Young Teachers in Guangxi Universitiesthe Philosophy and Social Sciences Foundation of Guangxi(Grant No.11FTJ002)
文摘Based on the double penalized estimation method,a new variable selection procedure is proposed for partially linear models with longitudinal data.The proposed procedure can avoid the effects of the nonparametric estimator on the variable selection for the parameters components.Under some regularity conditions,the rate of convergence and asymptotic normality of the resulting estimators are established.In addition,to improve efficiency for regression coefficients,the estimation of the working covariance matrix is involved in the proposed iterative algorithm.Some simulation studies are carried out to demonstrate that the proposed method performs well.
文摘We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are given. The strong convergence rates of the proposed estimators are obtained. In our estimation, the observation number of each subject will be completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.
基金supported by the National Natural Science Foundation of China under Grant Nos.11561006 and 11471127Master Foundation of Guangxi University of Technology under Grant No.070235+2 种基金Doctoral Foundation of Guangxi University of Science and Technology under Grant No.14Z07Research Projects of Colleges and Universities in Guangxi under Grant No.KY2015YB171the Open Fund Project of Guangxi Colleges and Universities Key Laboratory of Mathematics and Statistical Model under Grant No.2016GXKLMS005
文摘This paper considers partial function linear models of the form Y =∫X(t)β(t)dt + g(T)with Y measured with error. The authors propose an estimation procedure when the basis functions are data driven, such as with functional principal components. Estimators of β(t) and g(t) with the primary data and validation data are presented and some asymptotic results are given. Finite sample properties are investigated through some simulation study and a real data application.
基金Supported by National Natural Science Foundation of China (Grant No. 10871013), Natural Science Foundation of Beijing (Grant No. 1072004), and Natural Science Foundation of Guangxi Province (Grant No. 2010GXNSFB013051)
文摘In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.