期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
ASYMPTOTIC PROPERTIES OF ESTIMATORS IN PARTIALLY LINEAR SINGLE-INDEX MODEL FOR LONGITUDINAL DATA 被引量:3
1
作者 田萍 杨林 薛留根 《Acta Mathematica Scientia》 SCIE CSCD 2010年第3期677-687,共11页
In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be est... In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be estimated simultaneously by the proposed method while the feature of longitudinal data is considered. The existence, strong consistency and asymptotic normality of the estimators are proved under suitable conditions. A simulation study is conducted to investigate the finite sample performance of the proposed method. Our approach can also be used to study the pure single-index model for longitudinal data. 展开更多
关键词 Longitudinal data partially linear single-index model penalized spline strong consistency asymptotic normality
下载PDF
ESTIMATORS AND SOME BEHAVIORS FORA PARTIALLY LINEAR MODEL WITH CENSORED DATA 被引量:2
2
作者 陈平 《Acta Mathematica Scientia》 SCIE CSCD 1999年第3期321-331,共11页
This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author als... This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author also found that the estimators show remarkable in the small sample case yet. 展开更多
关键词 partial linear model censored data local linear smoothing cross-validation kernel estimator
下载PDF
Empirical Likelihood Inference for Generalized Partially Linear Models with Longitudinal Data
3
作者 Jinghua Zhang Liugen Xue 《Open Journal of Statistics》 2020年第2期188-202,共15页
In this article, we propose a generalized empirical likelihood inference for the parametric component in semiparametric generalized partially linear models with longitudinal data. Based on the extended score vector, a... In this article, we propose a generalized empirical likelihood inference for the parametric component in semiparametric generalized partially linear models with longitudinal data. Based on the extended score vector, a generalized empirical likelihood ratios function is defined, which integrates the within-cluster?correlation meanwhile avoids direct estimating the nuisance parameters in the correlation matrix. We show that the proposed statistics are asymptotically?Chi-squared under some suitable conditions, and hence it can be used to construct the confidence region of parameters. In addition, the maximum empirical likelihood estimates of parameters and the corresponding asymptotic normality are obtained. Simulation studies demonstrate the performance of the proposed method. 展开更多
关键词 Longitudinal data GENERALIZED partially linear models Empirical LIKELIHOOD QUADRATIC INFERENCE Function
下载PDF
ESTIMATION FOR THE AYMPTOTIC VARIANCE OF PARAMETRIC ESTIMATES IN PARTIAL LINEAR MODEL WITH CENSORED DATA 被引量:2
4
作者 秦更生 蔡雷 《Acta Mathematica Scientia》 SCIE CSCD 1996年第2期192-208,共17页
Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobse... Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobserved error. In Ref[1,2], it wes proved that the estimator for the asymptotic variance of βn(βn) is consistent. In this paper, we establish the limit distribution and the law of the iterated logarithm for,En, and obtain the convergest rates for En and the strong uniform convergent rates for gn(gn). 展开更多
关键词 partial linear model Censored data Kernel method Asymptotic normality Thc law of the iterated logarithm.
下载PDF
ROBUST ESTIMATION IN PARTIAL LINEAR MIXED MODEL FOR LONGITUDINAL DATA
5
作者 秦国友 朱仲义 《Acta Mathematica Scientia》 SCIE CSCD 2008年第2期333-347,共15页
In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under so... In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under some regular conditions, the asymptotic properties of the estimators are obtained. To avoid the computation of high-dimensional integral, a robust Monte Carlo Newton-Raphson algorithm is used. Some simulations are carried out to study the performance of the proposed robust estimators. In addition, the authors also study the robustness and the efficiency of the proposed estimators by simulation. Finally, two real longitudinal data sets are analyzed. 展开更多
关键词 Generalized estimating equation longitudinal data metropolis algorithm mixed effect partial linear model ROBUSTNESS
下载PDF
Function-on-Partially Linear Functional Additive Models
6
作者 Jinyou Huang Shuang Chen 《Journal of Applied Mathematics and Physics》 2020年第1期1-9,共9页
We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric... We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric and the nonparametric components proposed. In the final of this paper, as a result, we got the variance decomposition of the model and establish the asymptotic convergence rate for estimator. 展开更多
关键词 FUNCTIONAL data ANALYSIS FUNCTIONAL Principal COMPONENT ANALYSIS partial linear Regression models Penalized B-SPLINES Variance model
下载PDF
k-NN METHOD IN PARTIAL LINEAR MODEL UNDER RANDOM CENSORSHIP 被引量:1
7
作者 QIN GENGSHENG (Department of Mathematics,Sichuan University, Chengdu 610064). 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1995年第3期275-286,共12页
Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the est... Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3). 展开更多
关键词 partial linear model censored data class K method k-nearest neighbor weights
下载PDF
Partial Linear Model Averaging Prediction for Longitudinal Data
8
作者 LI Na FEI Yu ZHANG Xinyu 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第2期863-885,共23页
Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under inde... Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under independent errors,few authors have considered model averaging for semiparametric models with correlated errors.In this paper,the authors offer an optimal model averaging method to improve the prediction in partially linear model for longitudinal data.The model averaging weights are obtained by minimizing criterion,which is an unbiased estimator of the expected in-sample squared error loss plus a constant.Asymptotic properties,including asymptotic optimality and consistency of averaging weights,are established under two scenarios:(i)All candidate models are misspecified;(ii)Correct models are available in the candidate set.Simulation studies and an empirical example show that the promise of the proposed procedure over other competitive methods. 展开更多
关键词 Asymptotic optimality longitudinal data model averaging estimator partially linear model PREDICTION
原文传递
Some Additional Moment Conditions for a Dynamic Count Panel Data Model with Predetermined Explanatory Variables
9
作者 Yoshitsugu Kitazawa 《Open Journal of Statistics》 2013年第5期319-333,共15页
This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly ... This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly proposed moment conditions include those associated with the equidispersion, the Negbin I-type model and the stationarity. The GMM estimators are constructed incorporating the additional moment conditions. Some Monte Carlo experiments indicate that the GMM estimators incorporating the additional moment conditions perform well, compared to that using only the conventional moment conditions proposed by [2,3]. 展开更多
关键词 COUNT panel data linear Feedback model MOMENT Conditions GMM MONTE Carlo Experiments
下载PDF
一级干线公路的Panel Data限速模型 被引量:1
10
作者 王华荣 孙小端 聂百胜 《公路交通科技》 CAS CSCD 北大核心 2012年第4期114-119,共6页
为使限速值的确定更为客观,避免以往仅以85%位速度作为限速主要依据所存在的缺陷,在剖析合理限速与运行速度、道路特征等约束条件之间所存在逻辑关系的基础上,根据百分位速度与其他限速影响因素所构成变量的数据结构与Panel Data结构的... 为使限速值的确定更为客观,避免以往仅以85%位速度作为限速主要依据所存在的缺陷,在剖析合理限速与运行速度、道路特征等约束条件之间所存在逻辑关系的基础上,根据百分位速度与其他限速影响因素所构成变量的数据结构与Panel Data结构的相似性,引入Panel Data相关建模方法来构建限速与百分位速度等影响因素之间的理论模型。采用逐步回归法与最小二乘虚拟变量相结合的方法来求解最优时点固定效应模型表达式,应用F检验或Hausman检验结果确定Panel Data模型类型及具体表达式,最终确定一级干线公路小型车限速的主要影响因素依次为行人干扰、地形、纵坡、百分位速度,大型车限速的主要影响因素依次为地形、纵坡、行人干扰、出入口密度。最后,应用统计软件分别对一级干线公路大、小型车Panel Data限速模型残差有效性进行检验,结果表明所建模型误差均在±10 km/h之内,说明所提出的限速确定方法在实际应用中具备一定的可行性。 展开更多
关键词 交通工程 一级干线公路 panel data线性回归模型 限速
下载PDF
Shrinkage Estimation of Semiparametric Model with Missing Responses for Cluster Data
11
作者 Mingxing Zhang Jiannan Qiao +1 位作者 Huawei Yang Zixin Liu 《Open Journal of Statistics》 2015年第7期768-776,共9页
This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is... This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on different cluster. In order to avoid the biased results as well as improve the estimation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator (Group Lasso) to semiparametric model. That is to say, the method combines the approach of local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it can conduct nonparametric estimation and variable selection in a computationally efficient manner. According to the same criterion, the parametric estimators are also obtained. Additionally, for each cluster, the nonparametric and parametric estimators are derived, and then compute the weighted average per cluster as finally estimators. Moreover, the large sample properties of estimators are also derived respectively. 展开更多
关键词 SEMIPARAMETRIC partially linear Varying-Coefficient model MISSING RESPONSES CLUSTER data Group Lasso
下载PDF
基于辅助回归的面板数据固定效应变系数模型的估计
12
作者 杨宜平 覃少红 赵培信 《应用概率统计》 CSCD 北大核心 2024年第4期608-624,共17页
本文针对面板数据固定效应变系数模型引入辅助回归来解释个体效应与协变量之间的关系,以此来处理固定效应,将模型转化为部分线性变系数模型.为了获得系数函数的估计,采用正交投影的方法消除固定效应,进一步基于局部线性估计对系数函数... 本文针对面板数据固定效应变系数模型引入辅助回归来解释个体效应与协变量之间的关系,以此来处理固定效应,将模型转化为部分线性变系数模型.为了获得系数函数的估计,采用正交投影的方法消除固定效应,进一步基于局部线性估计对系数函数进行估计.在一些正则条件下,给出了系数函数估计的渐近性质.随后,模拟研究了所提出的估计方法的有限样本性质.模拟结果表明无论个体效应是随机的还是固定的,本文方法优于已有的方法.最后,对艾滋病人的CD4数据进行了实证分析. 展开更多
关键词 面板数据 固定效应 变系数模型 局部线性估计
下载PDF
Empirical likelihood-based inference in a partially linear model for longitudinal data 被引量:10
13
作者 XUE LiuGen~(1+) & ZHU LiXing~2 1 College of Applied Sciences, Beijing University of Technology, Beijing 100022, China 2 Department of Mathematics, Hong Kong Baptist University, Hong Kong, China 《Science China Mathematics》 SCIE 2008年第1期115-130,共16页
A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is prov... A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is proven to be asymptotically chi-squared, and the corresponding confidence regions for the pa- rameters of interest are then constructed. Also by the empirical likelihood ratio functions, we can obtain the maximum empirical likelihood estimates of the regression coefficients and the baseline function, and prove the asymptotic normality. The numerical results are conducted to compare the performance of the empirical likelihood and the normal approximation-based method, and a real example is analysed. 展开更多
关键词 partially linear model empirical likelihood confidence region longitudinal data 62G05 62G15 62G20
原文传递
Estimation of Partially Specified Spatial Panel Data Models with Random-Effects 被引量:2
14
作者 Yuan Qing ZHANG Guang Ren YANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第3期456-478,共23页
In this article, we study estimation of a partially specified spatial panel data linear regression with random-effects. Under the conditions of exogenous spatial weighting matrix and exogenous regressors, we give an i... In this article, we study estimation of a partially specified spatial panel data linear regression with random-effects. Under the conditions of exogenous spatial weighting matrix and exogenous regressors, we give an instrumental variable estimation. Under certain sufficient assumptions, we show that the proposed estimator for the finite dimensional parameter is root-N consistent and asymptotically normally distributed and the proposed estimator for the unknown function is consistent and asymptotically distributed. Consistent estimators for the asymptotic variance-covariance matrices of both the parametric and unknown components are provided. The Monte Carlo simulation results verify our theory and suggest that the approach has some practical value. 展开更多
关键词 SPATIAL panel data partially linear
原文传递
Double Penalized Variable Selection Procedure for Partially Linear Models with Longitudinal Data 被引量:1
15
作者 Pei Xin ZHAO An Min TANG Nian Sheng TANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第11期1963-1976,共14页
Based on the double penalized estimation method,a new variable selection procedure is proposed for partially linear models with longitudinal data.The proposed procedure can avoid the effects of the nonparametric estim... Based on the double penalized estimation method,a new variable selection procedure is proposed for partially linear models with longitudinal data.The proposed procedure can avoid the effects of the nonparametric estimator on the variable selection for the parameters components.Under some regularity conditions,the rate of convergence and asymptotic normality of the resulting estimators are established.In addition,to improve efficiency for regression coefficients,the estimation of the working covariance matrix is involved in the proposed iterative algorithm.Some simulation studies are carried out to demonstrate that the proposed method performs well. 展开更多
关键词 partially linear model variable selection penalized estimation longitudinal data
原文传递
Asymptotic Properties in Semiparametric Partially Linear Regression Models for Functional Data 被引量:1
16
作者 Tao ZHANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第3期631-644,共14页
We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are... We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are given. The strong convergence rates of the proposed estimators are obtained. In our estimation, the observation number of each subject will be completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators. 展开更多
关键词 longitudinal data functional data semiparametric partially linear regression models asymptotic properties
原文传递
Partially Function Linear Error-in-Response Models with Validation Data
17
作者 ZHANG Tao MENG Jiafu WANG Bin 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第3期734-750,共17页
This paper considers partial function linear models of the form Y =∫X(t)β(t)dt + g(T)with Y measured with error. The authors propose an estimation procedure when the basis functions are data driven, such as with fun... This paper considers partial function linear models of the form Y =∫X(t)β(t)dt + g(T)with Y measured with error. The authors propose an estimation procedure when the basis functions are data driven, such as with functional principal components. Estimators of β(t) and g(t) with the primary data and validation data are presented and some asymptotic results are given. Finite sample properties are investigated through some simulation study and a real data application. 展开更多
关键词 b-kmctional data partially function linear error-in-response models validation data.
原文传递
超高维纵向数据部分线性模型的特征筛选
18
作者 郭望 杨孝光 +1 位作者 周鹏飞 李运明 《统计与决策》 北大核心 2024年第12期46-51,共6页
超高维纵向数据的特征筛选是超高维特征筛选的难点之一,其难点是在保证边际筛选快速的前提下估计工作相关系数矩阵。文章在部分线性模型的假定下,考虑到纵向数据组间独立、组内相关的特点,采用样本协方差去估计未知的工作协方差矩阵,提... 超高维纵向数据的特征筛选是超高维特征筛选的难点之一,其难点是在保证边际筛选快速的前提下估计工作相关系数矩阵。文章在部分线性模型的假定下,考虑到纵向数据组间独立、组内相关的特点,采用样本协方差去估计未知的工作协方差矩阵,提出了剖面有协方差阵的确定独立筛选(PMSIS)方法,并在一定正则条件下,证明了该方法具有确定筛选性质。通过蒙特卡洛数值模拟与肠道菌群实例数据验证了该方法的有限样本性质,结果表明,新提出的PMSIS方法能有效筛选弱相关的协变量。 展开更多
关键词 超高维 纵向数据 部分线性模型 特征筛选 确定筛选性质
下载PDF
数据流下部分线性模型的在线估计
19
作者 卢果林 《计算机系统应用》 2024年第10期152-162,共11页
部分线性模型作为一种重要的半参数回归模型,因其在复杂数据结构分析中表现出的灵活适应性,广泛应用于各领域.然而,在大数据背景下,该模型的研究和应用面临着多重挑战,其中最为关键的难点在于计算速度和数据存储.本文针对以数据块形式... 部分线性模型作为一种重要的半参数回归模型,因其在复杂数据结构分析中表现出的灵活适应性,广泛应用于各领域.然而,在大数据背景下,该模型的研究和应用面临着多重挑战,其中最为关键的难点在于计算速度和数据存储.本文针对以数据块形式连续观测的数据流场景,提出一种在线估计的计算方法,用于估计部分线性模型中线性部分的参数和非线性部分的未知函数.该方法仅需利用当前数据块和之前计算过的汇总统计量即可实现实时估算.数值模拟从两个角度进行验证有效性:分别改变数据流的单位数据块大小和总样本规模,以比较在线估计方法和传统估计方法的偏差、标准误差以及均方误差.实验表明,与传统方法相比,本文的方法具有快速计算和无需重新访问历史数据的优势,同时在均方误差方面接近传统方法.最后,基于中国综合社会调查(CGSS)数据,本文应用在线估计方法分析我国劳动年龄人口生活质量的影响因素,得出周工作时间在30–60 h范围内的全职工作对提升生活质量具有积极作用的结论,为相关政策制定提供了一定参考价值. 展开更多
关键词 在线估计 部分线性模型 核回归 大数据 数据压缩
下载PDF
Variable Selection for Semiparametric Varying-Coefficient Partially Linear Models with Missing Response at Random 被引量:9
20
作者 Pei Xin ZHAO Liu Gen XUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第11期2205-2216,共12页
In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing respo... In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure. 展开更多
关键词 Semiparametric varying-coefficient partially linear model variable selection SCAD missing data
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部