期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Delete-group Jackknife Estimate in Partially Linear Regression Models with Heteroscedasticity 被引量:1
1
作者 Jin-hong You Gemai Chen 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2003年第4期599-610,共12页
Consider a partially linear regression model with an unknown vector parameter , an unknown function g(·), and unknown heteroscedastic error variances. Chen, You<SUP>[23]</SUP> proposed a semiparametri... Consider a partially linear regression model with an unknown vector parameter , an unknown function g(·), and unknown heteroscedastic error variances. Chen, You<SUP>[23]</SUP> proposed a semiparametric generalized least squares estimator (SGLSE) for , which takes the heteroscedasticity into account to increase efficiency. For inference based on this SGLSE, it is necessary to construct a consistent estimator for its asymptotic covariance matrix. However, when there exists within-group correlation, the traditional delta method and the delete-1 jackknife estimation fail to offer such a consistent estimator. In this paper, by deleting grouped partial residuals a delete-group jackknife method is examined. It is shown that the delete-group jackknife method indeed can provide a consistent estimator for the asymptotic covariance matrix in the presence of within-group correlations. This result is an extension of that in [21]. 展开更多
关键词 partially linear regression model asymptotic variance HETEROSCEDASTICITY delete-group jackknife semiparametric generalized least squares estimator
原文传递
Asymptotic Properties in Semiparametric Partially Linear Regression Models for Functional Data 被引量:1
2
作者 Tao ZHANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第3期631-644,共14页
We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are... We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are given. The strong convergence rates of the proposed estimators are obtained. In our estimation, the observation number of each subject will be completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators. 展开更多
关键词 longitudinal data functional data semiparametric partially linear regression models asymptotic properties
原文传递
Inference on Varying-Coefficient Partially Linear Regression Model
3
作者 Jing-yan FENG Ri-quan ZHANG Yi-qiang LU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第1期139-156,共18页
The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the l... The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the local linear method. In this paper its inference is addressed. Based on these estimates, the generalized like- lihood ratio test is established. Under the null hypotheses the normalized test statistic follows a x2-distribution asymptotically, with the scale constant and the degrees of freedom being independent of the nuisance param- eters. This is the Wilks phenomenon. Furthermore its asymptotic power is also derived, which achieves the optimal rate of convergence for nonparametric hypotheses testing. A simulation and a real example are used to evaluate the performances of the testing procedures empirically. 展开更多
关键词 asymptotic normality varying-coefficient partially linear regression model generalized likelihoodratio test Wilks phenomenon xi-distribution.
原文传递
Iterative Weighted Semiparametric Least Squares Estimation in Repeated Measurement Partially Linear Regression Models
4
作者 GemaiChen Jin-hongYou 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2005年第2期177-192,共16页
Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric... Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric generalized least squares estimator (SGLSE) of ,we propose an iterative weighted semiparametric least squares estimator (IWSLSE) and show that itimproves upon the SGLSE in terms of asymptotic covariance matrix. An adaptive procedure is given todetermine the number of iterations. We also show that when the number of replicates is less than orequal to two, the IWSLSE can not improve upon the SGLSE. These results are generalizations of thosein [2] to the case of semiparametric regressions. 展开更多
关键词 partially linear regression model heteroscedastic error variance iterativeweighted semiparametric least squares estimator (IWSLSE) asymptotic normality
原文传递
STRONG CONVERGENCE RATES OF SEVERAL ESTIMATORS IN SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS 被引量:1
5
作者 周勇 尤进红 王晓婧 《Acta Mathematica Scientia》 SCIE CSCD 2009年第5期1113-1127,共15页
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop... This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively. 展开更多
关键词 partially linear regression model varying-coefficient profile leastsquares error variance strong convergence rate law of iterated logarithm
下载PDF
The Consistency of LSE Estimators in Partial Linear Regression Models under Mixing Random Errors
6
作者 Yun Bao YAO Yu Tan LÜ +2 位作者 Chao LU Wei WANG Xue Jun WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第5期1244-1272,共29页
In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to... In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to be estimated,random errorsε_(i)are(α,β)-mix_(i)ng random variables.The p-th(p>1)mean consistency,strong consistency and complete consistency for least squares estimators ofβ^(*)and g(·)are investigated under some mild conditions.In addition,a numerical simulation is carried out to study the finite sample performance of the theoretical results.Finally,a real data analysis is provided to further verify the effect of the model. 展开更多
关键词 β)-mixing random variables partial linear regression model least squares estimator CONSISTENCY
原文传递
Truncated Estimator of Asymptotic Covariance Matrix in Partially Linear Models with Heteroscedastic Errors
7
作者 Yan-meng Zhao Jin-hong You Yong Zhou 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第4期565-574,共10页
A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statisti... A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statistical inference a consistent estimator of the asymptotic covariance matrix is needed. The traditional residual-based estimator of the asymptotic covariance matrix is not consistent when the errors are heteroscedastic and/or serially correlated. In this paper we propose a new estimator by truncating, which is an extension of the procedure in White. This estimator is shown to be consistent when the truncating parameter converges to infinity with some rate. 展开更多
关键词 partially linear regression model heteroscedastic serially correlation semiparametric least squares estimation asymptotic covariance matrix
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部