Nano-particle capture is a key process in filtration, separation, and biomedical applications. Here we explored the mechanisms of soft particle capture using nanofiber networks. We identified possible states of the ca...Nano-particle capture is a key process in filtration, separation, and biomedical applications. Here we explored the mechanisms of soft particle capture using nanofiber networks. We identified possible states of the capture process, which are defined by their structural and material parameters. By performing numerical analysis, we provided a phase diagram in the parametric space of the network structure and interracial adhesion. The work provides a conceptual model for rational design of synthetic materials in related applications that focus on the protection against or removal of virus, as well as other soft particles.展开更多
Particulate matter(PM)is a significant danger to both environment and human health.Despite the development of a series of air filters,they do not work well in harsh environment such as high tem-perature,high humidity ...Particulate matter(PM)is a significant danger to both environment and human health.Despite the development of a series of air filters,they do not work well in harsh environment such as high tem-perature,high humidity or long-time filtration.To make a three-dimensional(3D)particle capture de-vice,a sacrificial template approach was used to manufacture polydimethylsiloxane(PDMS)sponge,and then zeolite imidazole framework-8(ZIF-8)was grown in situ on the 3D network of PDMS sponge.The removal efficiency of PM_(2.5)or PM10 is greater than 99.8%because of the high specific surface area and porous network structure of PDMS sponge,as well as the large number of metal sites of ZIF-8.In addition,the sponge filter has long-term filtration stability and still achieves excellent performance after 65 h of filtration.The composite sponge can adapt to harsh environments such as high temperature(250℃)and high humidity(90%RH).Composite sponge filter has a regular shape,and it may be customized to any shape as required.This study provides a new idea for designing 3D high-efficiency air filters that can adapt to harsh environments.展开更多
基金supported by the Boeing Company,the National Natural Science Foundation of China (11222217 and 11002079)Tsinghua University Initiative Scientific Research Program (2011Z02174)the Tsinghua National Laboratory for Information Science and Technology of China
文摘Nano-particle capture is a key process in filtration, separation, and biomedical applications. Here we explored the mechanisms of soft particle capture using nanofiber networks. We identified possible states of the capture process, which are defined by their structural and material parameters. By performing numerical analysis, we provided a phase diagram in the parametric space of the network structure and interracial adhesion. The work provides a conceptual model for rational design of synthetic materials in related applications that focus on the protection against or removal of virus, as well as other soft particles.
基金supported by the National Natural Science Foundation of China(grant Nos.22075046,51972063)Natural Science Funds for Distinguished Young Scholar of Fujian Province(grant No.2020j06038)+1 种基金Natural Science Foundation of Fujian Province(grant No.2019j01256)111 Project(grant No.D17005).
文摘Particulate matter(PM)is a significant danger to both environment and human health.Despite the development of a series of air filters,they do not work well in harsh environment such as high tem-perature,high humidity or long-time filtration.To make a three-dimensional(3D)particle capture de-vice,a sacrificial template approach was used to manufacture polydimethylsiloxane(PDMS)sponge,and then zeolite imidazole framework-8(ZIF-8)was grown in situ on the 3D network of PDMS sponge.The removal efficiency of PM_(2.5)or PM10 is greater than 99.8%because of the high specific surface area and porous network structure of PDMS sponge,as well as the large number of metal sites of ZIF-8.In addition,the sponge filter has long-term filtration stability and still achieves excellent performance after 65 h of filtration.The composite sponge can adapt to harsh environments such as high temperature(250℃)and high humidity(90%RH).Composite sponge filter has a regular shape,and it may be customized to any shape as required.This study provides a new idea for designing 3D high-efficiency air filters that can adapt to harsh environments.