期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm 被引量:1
1
作者 Najad Ayyash Farzad Hejazi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期455-474,共20页
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther... Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration. 展开更多
关键词 hybrid optimization algorithm STRUCTURES EARTHQUAKE seismic damper devices particle swarm optimization method gravitational search algorithm
下载PDF
Reentry trajectory rapid optimization for hypersonic vehicle satisfying waypoint and no-fly zone constraints 被引量:5
2
作者 Lu Wang Qinghua Xing Yifan Mao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1277-1290,共14页
To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm w... To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm with the improved Gauss pseudospectral method (GPM), is proposed. The improved PSO algorithm is used to generate a good initial value in a short time, and the mission of the improved GPM is to find the final solution with a high precision. In the improved PSO algorithm, by controlling the entropy of the swarm in each dimension, the typical PSO algorithm's weakness of being easy to fall into a local optimum can be overcome. In the improved GPM, two kinds of breaks are introduced to divide the trajectory into multiple segments, and the distribution of the Legendre-Gauss (LG) nodes can be altered, so that all the constraints can be satisfied strictly. Thereby the advan- tages of both the intelligent optimization algorithm and the direct method are combined. Simulation results demonstrate that the proposed method is insensitive to initial values, and it has more rapid convergence and higher precision than traditional ones. 展开更多
关键词 hypersonic vehicle (HV) reentry trajectory optimization WAYPOINT no-fly zone particle swarm optimization (PSO) Gauss pseudospectral method (GPM).
下载PDF
Abnormality monitoring model of cracks in concrete dams 被引量:9
3
作者 BAO TengFei QIN Dong +1 位作者 ZHOU XiWu WU GuiFen 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第7期1914-1922,共9页
The abnormality monitoring model (AMM) of cracks in concrete dams is established through integrating safety monitoring theories with abnormality diagnosis methods of cracks. In addition, emphasis is placed on the infl... The abnormality monitoring model (AMM) of cracks in concrete dams is established through integrating safety monitoring theories with abnormality diagnosis methods of cracks. In addition, emphasis is placed on the influence of crack depth on crack mouth opening displacement (CMOD). A linear hypothesis is proposed for the propagation process of cracks in concrete based on the fictitious crack model (FCM). Abnormality points are detected through testing methods of dynamical structure mutation and statistical model mutation. The solution of AMM is transformed into a global optimization problem, which is solved by the particle swarm optimization (PSO) method. Therefore, the AMM of cracks in concrete dams is established and solved completely. In the end of the paper, the proposed model is validated by a typical crack at the 105 m elevation of a concrete gravity arch dam. 展开更多
关键词 concrete dam cracks abnormality monitoring model a linear hypothesis abnormality diagnosis particle swarm optimization method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部