期刊文献+
共找到339篇文章
< 1 2 17 >
每页显示 20 50 100
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
1
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
下载PDF
Location and Capacity Determination Method of Electric Vehicle Charging Station Based on Simulated Annealing Immune Particle Swarm Optimization 被引量:2
2
作者 Jiulong Sun Yanbo Che +2 位作者 Ting Yang Jian Zhang Yibin Cai 《Energy Engineering》 EI 2023年第2期367-384,共18页
As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of ... As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence. 展开更多
关键词 Electric vehicle charging station location selection and capacity configuration loss of distribution system simulated annealing immune particle swarm optimization Voronoi diagram
下载PDF
Harmonic Suppression Method Based on Immune Particle Swarm Optimization Algorithm in Micro-Grid 被引量:1
3
作者 Ying Zhang Yufeng Gong +1 位作者 Junyu Chen Jing Wang 《Journal of Power and Energy Engineering》 2014年第4期271-279,共9页
Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, s... Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, so it has been widespread concern. On the other hand due to the extensive use of power electronic devices and many of the loads within micro-grid are nonlinear in nature, Micro-grid generate a large number of harmonics, so harmonics pollution needs to be addressed. Usually we use passive filter to filter out harmonic, in this paper, we propose a new method to optimize the filter parameters, so passive filter can filter out harmonic better. This method utilizes immune particle swarm optimization algorithm to optimize filter parameters. It can be shown from the simulation results that the proposed method is effective for micro-grid voltage harmonics compensation. 展开更多
关键词 MICRO-GRID immune particle swarm optimization Algorithm HARMONIC COMPENSATION
下载PDF
An estimation method for direct maintenance cost of aircraft components based on particle swarm optimization with immunity algorithm 被引量:3
4
作者 吴静敏 左洪福 陈勇 《Journal of Central South University》 SCIE EI CAS 2005年第S2期95-101,共7页
A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune se... A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network. 展开更多
关键词 aircraft design maintenance COST particle swarm optimization IMMUNITY algorithm PREDICT
下载PDF
Immunity clone algorithm with particle swarm evolution 被引量:2
5
作者 刘丽珏 蔡自兴 陈虹 《Journal of Central South University of Technology》 EI 2006年第6期703-706,共4页
Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algori... Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algorithm lies in two aspects. Via immunity operation, the diversity of the antibodies was maintained, and the speed of convergent was improved by using particle swarm evolution equations. Simulation programme and three functions were used to check the effect of the algorithm. The advanced algorithm were compared with clonal selection algorithm and particle swarm algorithm. The results show that this advanced algorithm can converge to the global optimum at a great rate in a given range, the performance of optimization is improved effectively. 展开更多
关键词 IMMUNITY particle swarm optimization CLONE MUTATION
下载PDF
基于粒子群算法智能算法的TSP问题优化
6
作者 陈劲松 《黑河学院学报》 2024年第10期177-181,共5页
旅行商问题(TSP)是组合优化领域最著名的问题之一,具有深远的理论意义,并在现实应用中产生广泛影响。本研究采用基于粒子群优化(PSO)的智能算法来解决TSP问题。PSO算法利用集体智慧寻找最优解,相比传统方法,能更快速地接近最优解,特别... 旅行商问题(TSP)是组合优化领域最著名的问题之一,具有深远的理论意义,并在现实应用中产生广泛影响。本研究采用基于粒子群优化(PSO)的智能算法来解决TSP问题。PSO算法利用集体智慧寻找最优解,相比传统方法,能更快速地接近最优解,特别是在处理大规模问题时表现突出。此外,PSO算法不需要问题的具体细节知识,如梯度信息,因此非常适合解决复杂优化任务,这些任务难以通过精确的数学模型定义。将PSO算法应用于TSP问题不仅展示了其在具体问题上的有效性,还证明了该算法在处理更广泛复杂优化问题上的潜力和适应性。这突显了群体智能算法解决实际问题的能力,为解决其他复杂问题提供了有价值的启示。 展开更多
关键词 tsp 粒子群算法 智能算法
下载PDF
基于遗传算法特性的混合粒子群算法求解TSP问题
7
作者 陈琳 《白城师范学院学报》 2024年第5期73-78,共6页
为解决粒子群算法在旅行商问题上的收敛速度慢和路径最优化选择的问题,提出了一种新型的基于遗传算法特性的混合粒子群算法,对旅行商问题的最优路径进行规划.根据种群比例原则与迭代前的路径进行交叉、变异、复制等操作,建立了具有遗传... 为解决粒子群算法在旅行商问题上的收敛速度慢和路径最优化选择的问题,提出了一种新型的基于遗传算法特性的混合粒子群算法,对旅行商问题的最优路径进行规划.根据种群比例原则与迭代前的路径进行交叉、变异、复制等操作,建立了具有遗传算法特性的混合粒子群算法,并用于求解burma14问题.结果表明:相比传统的粒子群算法和模拟退火-禁忌搜索算法,混合粒子群算法在求解burma14问题中收敛时间与最优路径等指标上都有明显的优势,且随着迭代次数与种群个数的增大,算法的最优解逐渐减小;当最佳参数为种群个数150,迭代次数300时,最优解为30.179 424. 展开更多
关键词 混合粒子群算法 tsp问题 路径规划 影响因素
下载PDF
Traveling Salesman Problem Using an Enhanced Hybrid Swarm Optimization Algorithm 被引量:2
8
作者 郑建国 伍大清 周亮 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期362-367,共6页
The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was ... The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms. 展开更多
关键词 particle swarm optimization(PSO) ant COLONY optimization(ACO) swarm intelligence TRAVELING SALESMAN problem(tsp) hybrid algorithm
下载PDF
Hybrid anti-prematuration optimization algorithm
9
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
下载PDF
改进的混沌粒子群算法在TSP中的应用 被引量:26
10
作者 李文 伍铁斌 +1 位作者 赵全友 李玲香 《计算机应用研究》 CSCD 北大核心 2015年第7期2065-2067,共3页
针对基本粒子群(PSO)算法不能较好地解决旅行商优化问题(TSP),分析了基本粒子群算法的优化机理,在新定义粒子群进化方程中进化算子的基础上利用混沌运动的随机性、遍历性等特点,提出一种结合混沌优化和粒子群算法的改进混沌粒子群算法... 针对基本粒子群(PSO)算法不能较好地解决旅行商优化问题(TSP),分析了基本粒子群算法的优化机理,在新定义粒子群进化方程中进化算子的基础上利用混沌运动的随机性、遍历性等特点,提出一种结合混沌优化和粒子群算法的改进混沌粒子群算法。该算法对惯性权重进行自适应调整,引入混沌载波调整搜索策略避免陷入局部最优,形成一种同时满足全局和局部寻优搜索的混合离散粒子群算法,使其适合解决TSP此类组合优化问题。利用MATLAB对其进行了仿真。仿真结果说明此算法的搜索精度、收敛速度及优化效率均较优,证明了此算法在TSP中应用的有效性,且为求解TSP提供了一种参考方法。 展开更多
关键词 粒子群优化算法 旅行商问题 混沌优化 自适应 局部调整
下载PDF
智能优化算法求解TSP问题 被引量:121
11
作者 高海昌 冯博琴 朱利b 《控制与决策》 EI CSCD 北大核心 2006年第3期241-247,252,共8页
TSP(旅行商)问题代表组合优化问题,具有很强的工程背景和实际应用价值,但至今尚未找到非常有效的求解方法.为此,讨论了最近研究比较热门的使用各种智能优化算法(蚁群算法、遗传算法、模拟退火算法、禁忌搜索算法、Hopfield神经网络、粒... TSP(旅行商)问题代表组合优化问题,具有很强的工程背景和实际应用价值,但至今尚未找到非常有效的求解方法.为此,讨论了最近研究比较热门的使用各种智能优化算法(蚁群算法、遗传算法、模拟退火算法、禁忌搜索算法、Hopfield神经网络、粒子群优化算法、免疫算法等)求解TSP问题的研究进展,指出了各种方法的优缺点和改进策略.最后总结并提出了智能优化算法求解TSP问题的未来研究方向和建议. 展开更多
关键词 旅行商问题 蚁群算法 遗传算法 模拟退火算法 禁忌搜索算法 粒子群优化算法
下载PDF
一种求解TSP问题的混合算法 被引量:4
12
作者 谷文祥 李向涛 +2 位作者 王春颖 李国媛 殷明浩 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期60-64,共5页
结合粒子群算法、蚁群算法、重力搜索算法提出了一种新的混合算法——TSP-GPAA.该算法将粒子群算法和重力搜索算法加入到蚁群算法中,利用粒子群算法的全局搜索能力解决了蚁群算法的初始信息素匮乏的问题,并且重力搜索算法将粒子群算法... 结合粒子群算法、蚁群算法、重力搜索算法提出了一种新的混合算法——TSP-GPAA.该算法将粒子群算法和重力搜索算法加入到蚁群算法中,利用粒子群算法的全局搜索能力解决了蚁群算法的初始信息素匮乏的问题,并且重力搜索算法将粒子群算法和蚁群算法参数进行优化,明显提高了蚁群算法的优化性能.实验表明新算法对于解决TSP问题是有效的. 展开更多
关键词 蚁群算法 粒子群算法 重力搜索算法 旅行商问题
下载PDF
改进粒子群优化算法求解TSP问题 被引量:13
13
作者 苏晋荣 王建珍 《计算机工程与应用》 CSCD 北大核心 2010年第4期52-53,75,共3页
针对粒子群优化算法易陷入局部极值的缺点,提出一种改进粒子群算法,该算法借鉴贪婪算法的思想初始化种群,利用两个种群同时寻优,并将遗传算法中交叉和变异操作引入其中,实现种群间的信息共享。用14点TSP标准数据对算法性能进行了测试,... 针对粒子群优化算法易陷入局部极值的缺点,提出一种改进粒子群算法,该算法借鉴贪婪算法的思想初始化种群,利用两个种群同时寻优,并将遗传算法中交叉和变异操作引入其中,实现种群间的信息共享。用14点TSP标准数据对算法性能进行了测试,结果表明该算法能够较早跳出局部最优,具有较高的收敛速度和收敛率。 展开更多
关键词 粒子群优化算法 旅行商问题 贪婪算法 交叉 变异
下载PDF
求解TSP的改进自组织PSO算法 被引量:6
14
作者 孙晶晶 雷秀娟 《计算机工程与应用》 CSCD 北大核心 2009年第31期30-33,共4页
针对粒子群算法(PSO)的早熟收敛现象,从种群多样性出发,基于自组织临界性特点改进PSO算法的参数设置,采用自组织的惯性权重和加速系数,并增加了变异算子。借鉴交换子和交换序概念,设计出了能直接在离散域进行搜索的改进的自组织PSO算法... 针对粒子群算法(PSO)的早熟收敛现象,从种群多样性出发,基于自组织临界性特点改进PSO算法的参数设置,采用自组织的惯性权重和加速系数,并增加了变异算子。借鉴交换子和交换序概念,设计出了能直接在离散域进行搜索的改进的自组织PSO算法。用于旅行商问题(TSP)的求解,并与基本及其他典型改进PSO算法进行性能比较。实验结果证实改进的自组织PSO算法是有效的。 展开更多
关键词 粒子群算法 自组织 种群多样性 旅行商问题(tsp)
下载PDF
基于混合蛙跳粒子群算法的TSP问题求解 被引量:7
15
作者 康朝海 李鹏娜 +1 位作者 张永丰 陈建玲 《吉林大学学报(信息科学版)》 CAS 2017年第5期498-506,共9页
为提高粒子群算法求解TSP(Travelling Salesman Problem)问题的性能,在算法搜索初期,将混合蛙跳算法和粒子群算法相融合,针对初始粒子群随意性大、粒子分布不均的问题,利用混合蛙跳算法的分组策略将种群分组,采用改进的蛙跳更新公式优... 为提高粒子群算法求解TSP(Travelling Salesman Problem)问题的性能,在算法搜索初期,将混合蛙跳算法和粒子群算法相融合,针对初始粒子群随意性大、粒子分布不均的问题,利用混合蛙跳算法的分组策略将种群分组,采用改进的蛙跳更新公式优化次优个体,并抽取各层次个体得到新种群,从而提高最优个体的获得速度;在算法后期,引入3重交叉策略和基于疏密性的引导变异操作,解决粒子多样性降低、易陷入局部最优的问题。利用改进算法求解TSP问题,并与其他算法进行对比。结果表明,改进算法是有效的且性能优于其他算法。 展开更多
关键词 混合蛙跳算法 粒子群算法 tsp问题 交叉变异
下载PDF
基于改进粒子群优化算法的TSP问题研究 被引量:3
16
作者 叶安新 《计算机与现代化》 2011年第4期1-3,共3页
针对标准粒子群优化算法易出现问题,提出一种改进粒子群算法。该算法为不同的粒子分配不同的任务,对性能较好的粒子使用较小的惯性权重,对性能较差的粒子采用较大的惯性权重,惯性权重根据适应度函数自适应调整,更好地平衡算法的全局与... 针对标准粒子群优化算法易出现问题,提出一种改进粒子群算法。该算法为不同的粒子分配不同的任务,对性能较好的粒子使用较小的惯性权重,对性能较差的粒子采用较大的惯性权重,惯性权重根据适应度函数自适应调整,更好地平衡算法的全局与局部搜索能力,提高算法的多样性与搜索效率。用14点TSP标准数据对算法性能进行测试,结果表明该算法能够较早跳出局部最优,具有较高的收敛速度和收敛率。 展开更多
关键词 粒子群优化算法 旅行商问题 惯性权重 早熟收敛
下载PDF
变异概率对PSO算法求解TSP问题的影响研究
17
作者 刘衍民 赵庆祯 罗东升 《遵义师范学院学报》 2010年第6期99-101,共3页
提出了一种求解旅行商问题的改进粒子群算法,该算法引入了求解离散问题的学习机制和变异策略以提升粒子群算法求解旅行商问题的效率.通过对两个经典的测试问题(Oliver30和burma14)的仿真研究,表明不同变异概率对算法的影响,当变异概率为... 提出了一种求解旅行商问题的改进粒子群算法,该算法引入了求解离散问题的学习机制和变异策略以提升粒子群算法求解旅行商问题的效率.通过对两个经典的测试问题(Oliver30和burma14)的仿真研究,表明不同变异概率对算法的影响,当变异概率为0.5时,算法的运行效率最高. 展开更多
关键词 旅行商问题 粒子群算法 变异概率
下载PDF
一种改进多状态的粒子群算法在TSP中的应用
18
作者 李航 滕琳 殷守林 《沈阳师范大学学报(自然科学版)》 CAS 2018年第1期41-46,共6页
粒子群优化算法是一种基于群体协作的随机搜索算法,它广泛应用在旅行商问题(TSP)优化问题上。传统粒子群算法具有收敛速度慢,误差较大的缺点。为改善其效果,提出一种改进的多状态粒子群算法。算法基于简化的2个状态之间的传输准则进行改... 粒子群优化算法是一种基于群体协作的随机搜索算法,它广泛应用在旅行商问题(TSP)优化问题上。传统粒子群算法具有收敛速度慢,误差较大的缺点。为改善其效果,提出一种改进的多状态粒子群算法。算法基于简化的2个状态之间的传输准则进行改进,而且引进一个直接产生可行解的转换策略。最后,采用旅行商问题进行新算法性能验证,并分别从收敛时间以及精度误差方面作比较。实验结果表明,新算法具有较高的执行效率和较快的收敛速度。在以后的实际工程应用中,也将会发挥一定的价值。 展开更多
关键词 粒子群优化算法 tsp 多状态
下载PDF
一种求解TSP问题的改进粒子群优化算法
19
作者 周德荣 《广西民族大学学报(自然科学版)》 CAS 2015年第3期66-69,共4页
针对基本粒子群优化算法(PSO)容易陷入局部最优的缺点,将遗传算法、模拟退火算法与粒子群算法结合,提出一种改进的粒子群优化算法.在PSO的快速寻优基础上,融入遗传算法的交叉与变异操作,使粒子群具有变异能力,同时引入模拟退火算法的Met... 针对基本粒子群优化算法(PSO)容易陷入局部最优的缺点,将遗传算法、模拟退火算法与粒子群算法结合,提出一种改进的粒子群优化算法.在PSO的快速寻优基础上,融入遗传算法的交叉与变异操作,使粒子群具有变异能力,同时引入模拟退火算法的Metropolis准则,允许粒子在目标函数有限范围内变坏,防止陷入局部最优,形成一种新的算法模型,应用于TSP问题求解.采用TSPLIB中burma 14和att 48作为实验数据,对算法求解旅行商问题进行模拟与分析.仿真实验结果表明该改进算法提高了求解质量,全局搜索能力得到增强. 展开更多
关键词 粒子群优化算法 遗传算法 模拟退火算法 旅行商问题 最优解
下载PDF
求解TSP问题的增强型自探索粒子群算法 被引量:7
20
作者 熊伟 张江维 张火林 《华北电力大学学报(自然科学版)》 CAS 北大核心 2009年第6期69-74,85,共7页
分析了单点调整思想自探索粒子群算法求解TSP问题的不足,并以此为基础构造了求解TSP问题的增强型自探索粒子群算法。在算法中进一步强化了粒子的自探索行为,增加了随机序列段调整思想,以提高算法发现全局最优解的概率。实验结果分析,表... 分析了单点调整思想自探索粒子群算法求解TSP问题的不足,并以此为基础构造了求解TSP问题的增强型自探索粒子群算法。在算法中进一步强化了粒子的自探索行为,增加了随机序列段调整思想,以提高算法发现全局最优解的概率。实验结果分析,表明了该增强型自探索粒子群算法具有较强的全局搜优能力,比其他同类算法获得了质量更高的解。 展开更多
关键词 tsp 粒子群算法 增强型自探索粒子群算法
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部