The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious.To improve agglomeration effectiveness of fine particles,a dual zone electr...The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious.To improve agglomeration effectiveness of fine particles,a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed.The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0μm under applied AC electric field.An optimal condition for achieving better agglomeration effectiveness was found to be as follows:flue gas flow velocity of3.00 m/s,particle concentration of 2.00 g/m^3,output voltage of 35 kV and length of the barb of16 ram.In addition,4.0-6.0μm particles haste the best effectiveness with the variation of particle volume occupancy of-3.2.展开更多
Physical simulation is used to study the movement of nonmetallic particles in Al melt in electro- magnetic field. It is found that the terminal velocity of particles in different Reynolds number range has different fu...Physical simulation is used to study the movement of nonmetallic particles in Al melt in electro- magnetic field. It is found that the terminal velocity of particles in different Reynolds number range has different functions. By confirming drag force coefficient of nonmetallic particles with Reynolds number in the range of 0.2-10 and 10-25 respectively, two functions of terminal ve- locity for spherical nonmetallic particles have been got accordingly, which provide a theoretical basis for separating nonmetallic inclusions from Al melt in electromagnetic field.展开更多
The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device.Characterisation of the flow field of a model gas turbine ...The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device.Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a2-D particle imaging velocimetry(PIV)system.The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions,i.e.,with and without the combustor wall.The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions.The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume.The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow.Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet,where the radial velocity components increase for both open and confined environment.Under reacting condition,the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity.The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants.The flow field data can be used as validation target for swirl combustion modelling.展开更多
Based on analyzing the induced signals from the double-grids of an ionization chamber, the electron-drift time between the two grids is determined and the electron-drift velocity is derived. A waveform digitizer is em...Based on analyzing the induced signals from the double-grids of an ionization chamber, the electron-drift time between the two grids is determined and the electron-drift velocity is derived. A waveform digitizer is employed to record pulses from the two grids of the ionization chamber. The electron-drift velocity is measured as a function of the reduced electric field E/p for eight different ratios of Ar+CH4 mixtures. By analyzing the experimental data of this study, self-consistency of experimental data is achieved, and formulae for calculating electron-drift velocity in any ratio of Ar+CH4 mixtures are obtained.展开更多
We present Monte Carlo studies on the singly tagged D mesons, which are crucial in the absolute measurements of D meson decays, based on a full Monte Carlo simulation for the BES-III detector, with the BES-III Offline...We present Monte Carlo studies on the singly tagged D mesons, which are crucial in the absolute measurements of D meson decays, based on a full Monte Carlo simulation for the BES-III detector, with the BES-III Offline Software System. The expected detection efficiencies and mass resolutions of the tagged D mesons are well estimated.展开更多
The potential of bulk-like WTe2 particles for the realization of a passive Q-switch operating at the 1 μm wavelength was investigated. The WTe2 particles were prepared using a simple mechanical exfoliation method tog...The potential of bulk-like WTe2 particles for the realization of a passive Q-switch operating at the 1 μm wavelength was investigated. The WTe2 particles were prepared using a simple mechanical exfoliation method together with Scotch tape. By attaching bulk-like WTe2 particles, which remained on the top of the sticky surface of a small segment of the Scotch tape, to the flat side of a side-polished fiber, a saturable absorber(SA) was readily implemented. A strong saturable absorption was then readily obtained through an evanescent field interaction with the WTe2 particles. The modulation depth of the prepared SA was measured as ~2.18% at 1.03 μm. By incorporating the proposed SA into an all-fiberized ytterbium-doped fiber ring cavity, stable Qswitched pulses were readily achieved.展开更多
In this paper, a new method to derive the Fokker-Planck coefficients defined by a non-Maxwellian velocity distribution function for the field particles is presented. The three- fold integral and the new Debye cutoff p...In this paper, a new method to derive the Fokker-Planck coefficients defined by a non-Maxwellian velocity distribution function for the field particles is presented. The three- fold integral and the new Debye cutoff parameter, which were introduced by CHANG and LI, are applied. Therefore, divergence difficulties and the customary replacement of relative velocity g by thermal velocity vth are naturally avoided. The probability function P(v, Av) for non- Maxwellian scattering is derived by the method of choosing velocity transfer Av, which is a true measure of collision intensity, as an independent variable. The method enables the difference between small-angle scattering and small-momentum-transfer collisions of the inverse-square force to be well clarified. With the help of the probability function, the Fokker-Planck coefficients are obtained by a normal original Fokker-Planck approach. The friction and diffusion coefficients of the Fokker-Planck equation are modified for non-Maxwellian scattering and are used to investigate the relaxation processes for the weakly coupled plasma. The profiles of the relaxation rates show that the slowing down and deflection processes are weakened in the conditions of non-Maxwellian scattering.展开更多
In this paper, a solution to the Fokker-Planck equation is presented, which is extended to the field particles' high-energy-tail non-Maxwellian velocity distribution function in transport theory. Based on the correct...In this paper, a solution to the Fokker-Planck equation is presented, which is extended to the field particles' high-energy-tail non-Maxwellian velocity distribution function in transport theory. Based on the correct physical concept of collision intensity, introduced by CHANG and LI, the electrical conductivities for like-particles collisions are obtained in different conditions. The modified Fokker-Planck coefficients for non-Maxwellian scattering are applied in the study. It is found that the parallel part of the collision operator plays an important role. The non-Maxwellian scattering will stimulate the transport processes in various degrees with mutative deviation parameters.展开更多
Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred...Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value.展开更多
The generation and observation of coherent THz synchrotron radiation from femtosecond electron bunches in the Shanghai Institute of Applied Physics femtosecond accelerator device is reported. We describe the experimen...The generation and observation of coherent THz synchrotron radiation from femtosecond electron bunches in the Shanghai Institute of Applied Physics femtosecond accelerator device is reported. We describe the experiment setup and present the first result of THz radiation properties such as power and spectrum.展开更多
Beam dynamics and rf designs of a 104 MHz ladder type IH-RFQ (L-IH-RFQ) accelerator are finished at Peking University for the acceleration of 14C+ from 40 keV to 500 keV. As a specific feature, the output beam ener...Beam dynamics and rf designs of a 104 MHz ladder type IH-RFQ (L-IH-RFQ) accelerator are finished at Peking University for the acceleration of 14C+ from 40 keV to 500 keV. As a specific feature, the output beam energy spread is as low as 0.6% achieved with the internal discrete bunching method, which makes potential applications of RFQ feasible, such as accelerator mass spectrometry and ion implantation. Tolerances of the beam dynamics design are studied by means of changing the input beam parameters, and the results are quite satisfying. On the other hand, the L-IH-RFQ structure is employed, taking advantage of its mechanical stability and the absence of inter-electrode voltage asymmetry. Radio-frequency properties are studied and optimized for reducing power loss with Microwave Studio (MWS). Tuning of the field flatness and frequency is investigated in principle.展开更多
A 30-MeV femto-second electron linac is built at the Shanghai Institute of Applied Physics, which can produce high power, coherent THz undulator radiation. We report the experimental facility and measurement of the po...A 30-MeV femto-second electron linac is built at the Shanghai Institute of Applied Physics, which can produce high power, coherent THz undulator radiation. We report the experimental facility and measurement of the power, frequency spectrum. First experiments show the averaged power at THz to be about 20mW.展开更多
Accelerator mass spectrometry (AMS) is one of the most promising methods to detect minute amounts of 182Hf. However, the sensitivity of 5×10^-11 for ^182Hf/180Hf obtained previously by the AMS method at China I...Accelerator mass spectrometry (AMS) is one of the most promising methods to detect minute amounts of 182Hf. However, the sensitivity of 5×10^-11 for ^182Hf/180Hf obtained previously by the AMS method at China Institute of Atomic Energy (CIAE) cannot meet the requirement of some applications. We present some new improvements of measurement method for AMS measurement of 182Hf at the CIAE HI?13 tandem accelerator system. As a result, a sensitivity of 1.0×10^-11 for 182Hf/180Hf is achieved.展开更多
Two dimensional particle-in-cell simulations are taken to study the interaction of a circularly polarized laser pulse with a nano-scale micro-structured target. The protons which are doped in the rear side of the targ...Two dimensional particle-in-cell simulations are taken to study the interaction of a circularly polarized laser pulse with a nano-scale micro-structured target. The protons which are doped in the rear side of the target experience the electrostatic fields caused by both the radiation pressure driven shock and the target normal sheath at the rear side of the target. A quasimonoenergetic proton bunch with central energy of about 11MeV and energy spread of ∆ ε/ε about 0.18 is achieved by using a 3.45×1019 W/cm2, 66fs laser pulse. A comparison with the case of linearly polarized laser pulse and the same target condition is considered.展开更多
For heating the tokamak plasma effectively, the ion source must be capable of producing ions with high proton ratio. The proton ratio, which is found to be more than 65.6% at the ion current of 19.6A with the extracti...For heating the tokamak plasma effectively, the ion source must be capable of producing ions with high proton ratio. The proton ratio, which is found to be more than 65.6% at the ion current of 19.6A with the extraction voltage of 39.6 k V, is measured with an image spectrograph by Doppler shift effect of Balmer-α-radiation spectrum emitted from fast hydrogen particles. The tendency of proton ratio with the ion density in experiment is almost the same as the mode devised by Zhang et al. Okumura et al. only gave the affection of the plasma volume and ion loss area on the proton ratio, but the relationship between the ion density in chamber and the proton ratio was not presented. We give the relationship.展开更多
An experimental measurement of radiatively heated iron plasma transmission spectra was performed on Shenguang II laser facility. In the measurement, the self?emission spectrum, the backlighting spectrum, and the abso...An experimental measurement of radiatively heated iron plasma transmission spectra was performed on Shenguang II laser facility. In the measurement, the self?emission spectrum, the backlighting spectrum, and the absorption spectrum were imaged with a flat filed grating and recorded on a gated micro channel plate detector to obtain the time-resolved transmission spectra in the range 10-20 ? (approximately 0.6-1.3 keV). Experimental results are compared with the calculation results of an unsolved transition array (UTA) code. The time-dependent relative shift in the positions of the 2p-3d transmission array is interpreted in terms of the plasma temperature variations.展开更多
By means of the EOS of QCD at zero temperature and finite quark chemical potential we proposed [Phys. Rev. D 78 (2008) 054001] in the framework of rainbow-ladder approximation of Dyson-Schwinger approach, we investi...By means of the EOS of QCD at zero temperature and finite quark chemical potential we proposed [Phys. Rev. D 78 (2008) 054001] in the framework of rainbow-ladder approximation of Dyson-Schwinger approach, we investigate the structure of quark star and its property. It is found that the mass-radius relation in our model is very different from that of usual quark star models, but similar to neutron star models. The obtained mass of quark star is about 1.75M⊙- 2.2M⊙. The obtained radius of quark star is 22 - 26 km, which is obviously larger than the results in other models. The reason for this discrepancy is analyzed.展开更多
We use the direct method proposed by He et al. [Phys. Lett. B 680 (2009) 432) to calculate the quark-number susceptibility (QNS) at finite temperature and the chemical potential in the quasi-particle model. In ou...We use the direct method proposed by He et al. [Phys. Lett. B 680 (2009) 432) to calculate the quark-number susceptibility (QNS) at finite temperature and the chemical potential in the quasi-particle model. In our approach the QNS is given by a formula solely involving the dressed quark propagator at finite chemical potential μ and temperature Τ. The QNS at finite μ and Τ is calculated in the quasi-particle model. It is found that at high temperatures the QNS tends to the ideal quark gas result. At very small temperatures the QNS vanishes. This vanishing behavior in the low-temperature region is consistent with the lattice results. For μ∈ [0,180] MeV, our results show that there exists a rapid increase of QNS near some temperatures. The temperature at which the rapid increase occurs shifts to smaller values with the increasing quark chemical potential. This rapid increase could be regarded as a signal of a crossover.展开更多
Specific activity of primordial radionuclides and associated radiation hazards due to 40K, 226Ra, and 232Th have been measured in backed red brick samples, collected from five highly populated areas of the North West ...Specific activity of primordial radionuclides and associated radiation hazards due to 40K, 226Ra, and 232Th have been measured in backed red brick samples, collected from five highly populated areas of the North West Frontier Province of Pakistan. For the detection, analysis and data acquisition, a high purity germanium detector was used. Associated external doses were calculated using a Monte Carlo neutron photon transport code. A theoretical model to determine the gamma dose rate at 1 m height from the floor, made of bricks, was employed for the calculation of mass attenuation coefficient and self-absorption in the floor for the gamma energies of these radionuclides and their progeny. Monte Carlo simulation shows that in this study the floor, having more than an effective thickness of 15 cm, contributes very little to the external gamma dose rate. The values of the external dose rate and annual effective dose are found to be much lower than the world average as well as from other countries of the world.展开更多
The elliptic motion of particle in the fields of the inhomogeneous plane wavs that are generated on a liquid thermoviscoelastic solid interface is studied.. Calculations show that the ellipticity of the motion of Part...The elliptic motion of particle in the fields of the inhomogeneous plane wavs that are generated on a liquid thermoviscoelastic solid interface is studied.. Calculations show that the ellipticity of the motion of Particle is related to the incident angle that the homogeneous plane wave incidents upon the interface. The influeree of viscous properties of solid on the ellipticity of particle's motion is small and shows near the critical angles of longitudinal and transversal wavs. Under the incidence at Rayleigh angle, the change of the ellipticity of motion of the particle is periodic in the wake of its Rayleigh wavelength and its elliptic locus is couoter clockwise and clockwise rotation periodically.展开更多
基金supported by the Key Technology R&D Program of Hebei,China(No.13211207D)
文摘The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious.To improve agglomeration effectiveness of fine particles,a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed.The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0μm under applied AC electric field.An optimal condition for achieving better agglomeration effectiveness was found to be as follows:flue gas flow velocity of3.00 m/s,particle concentration of 2.00 g/m^3,output voltage of 35 kV and length of the barb of16 ram.In addition,4.0-6.0μm particles haste the best effectiveness with the variation of particle volume occupancy of-3.2.
基金supported by the National Natural Science Foundation of China(No.59871029)the China Postdoctoral Science Foundation.
文摘Physical simulation is used to study the movement of nonmetallic particles in Al melt in electro- magnetic field. It is found that the terminal velocity of particles in different Reynolds number range has different functions. By confirming drag force coefficient of nonmetallic particles with Reynolds number in the range of 0.2-10 and 10-25 respectively, two functions of terminal ve- locity for spherical nonmetallic particles have been got accordingly, which provide a theoretical basis for separating nonmetallic inclusions from Al melt in electromagnetic field.
基金Supported by the Ministry of Higher Education Malaysia and Universiti Teknologi Malaysia(Research University Grant Tier-1,Grant No.06H29)Ministry of Science,Technology and Innovation(MOSTI)Malaysia(Grant No.03-01-06-KHAS01)
文摘The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device.Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a2-D particle imaging velocimetry(PIV)system.The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions,i.e.,with and without the combustor wall.The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions.The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume.The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow.Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet,where the radial velocity components increase for both open and confined environment.Under reacting condition,the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity.The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants.The flow field data can be used as validation target for swirl combustion modelling.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10875006 and 10811120014, and China Nuclear Data Center.
文摘Based on analyzing the induced signals from the double-grids of an ionization chamber, the electron-drift time between the two grids is determined and the electron-drift velocity is derived. A waveform digitizer is employed to record pulses from the two grids of the ionization chamber. The electron-drift velocity is measured as a function of the reduced electric field E/p for eight different ratios of Ar+CH4 mixtures. By analyzing the experimental data of this study, self-consistency of experimental data is achieved, and formulae for calculating electron-drift velocity in any ratio of Ar+CH4 mixtures are obtained.
基金Supported by the National Natural Science Foundation of China under contracts Nos 10775075 and 10835001.
文摘We present Monte Carlo studies on the singly tagged D mesons, which are crucial in the absolute measurements of D meson decays, based on a full Monte Carlo simulation for the BES-III detector, with the BES-III Offline Software System. The expected detection efficiencies and mass resolutions of the tagged D mesons are well estimated.
基金supported by the National Research Foundation of Korea funded by the Korean Government(MSIT),South Korea(Grant Nos.NRF-2015R1A2A2A11000907 and NRF-2015R1A2A2A04006979)Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2017-2015-0-00385),supervised by the Institute for Information and Communications Technology Promotion(IITP)
文摘The potential of bulk-like WTe2 particles for the realization of a passive Q-switch operating at the 1 μm wavelength was investigated. The WTe2 particles were prepared using a simple mechanical exfoliation method together with Scotch tape. By attaching bulk-like WTe2 particles, which remained on the top of the sticky surface of a small segment of the Scotch tape, to the flat side of a side-polished fiber, a saturable absorber(SA) was readily implemented. A strong saturable absorption was then readily obtained through an evanescent field interaction with the WTe2 particles. The modulation depth of the prepared SA was measured as ~2.18% at 1.03 μm. By incorporating the proposed SA into an all-fiberized ytterbium-doped fiber ring cavity, stable Qswitched pulses were readily achieved.
基金National High-Tech ICF(Inertial Confinement Fusion)Committee in ChinaNational Natural Science Foundation of China(Nos.10475076,10505021,40336052,and 10175065)
文摘In this paper, a new method to derive the Fokker-Planck coefficients defined by a non-Maxwellian velocity distribution function for the field particles is presented. The three- fold integral and the new Debye cutoff parameter, which were introduced by CHANG and LI, are applied. Therefore, divergence difficulties and the customary replacement of relative velocity g by thermal velocity vth are naturally avoided. The probability function P(v, Av) for non- Maxwellian scattering is derived by the method of choosing velocity transfer Av, which is a true measure of collision intensity, as an independent variable. The method enables the difference between small-angle scattering and small-momentum-transfer collisions of the inverse-square force to be well clarified. With the help of the probability function, the Fokker-Planck coefficients are obtained by a normal original Fokker-Planck approach. The friction and diffusion coefficients of the Fokker-Planck equation are modified for non-Maxwellian scattering and are used to investigate the relaxation processes for the weakly coupled plasma. The profiles of the relaxation rates show that the slowing down and deflection processes are weakened in the conditions of non-Maxwellian scattering.
基金supported by National High-Tech ICF Committee in ChinaNational Natural Science Foundation of China(Nos.10475076,10505021,40336052,and 10175065)
文摘In this paper, a solution to the Fokker-Planck equation is presented, which is extended to the field particles' high-energy-tail non-Maxwellian velocity distribution function in transport theory. Based on the correct physical concept of collision intensity, introduced by CHANG and LI, the electrical conductivities for like-particles collisions are obtained in different conditions. The modified Fokker-Planck coefficients for non-Maxwellian scattering are applied in the study. It is found that the parallel part of the collision operator plays an important role. The non-Maxwellian scattering will stimulate the transport processes in various degrees with mutative deviation parameters.
基金This project is supported by Provincial Science Technology Committee of Jiangsu China(No.BJ99025).
文摘Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value.
文摘The generation and observation of coherent THz synchrotron radiation from femtosecond electron bunches in the Shanghai Institute of Applied Physics femtosecond accelerator device is reported. We describe the experiment setup and present the first result of THz radiation properties such as power and spectrum.
基金Supported by the National Natural Science Foundation of China under Grant No 10775009.
文摘Beam dynamics and rf designs of a 104 MHz ladder type IH-RFQ (L-IH-RFQ) accelerator are finished at Peking University for the acceleration of 14C+ from 40 keV to 500 keV. As a specific feature, the output beam energy spread is as low as 0.6% achieved with the internal discrete bunching method, which makes potential applications of RFQ feasible, such as accelerator mass spectrometry and ion implantation. Tolerances of the beam dynamics design are studied by means of changing the input beam parameters, and the results are quite satisfying. On the other hand, the L-IH-RFQ structure is employed, taking advantage of its mechanical stability and the absence of inter-electrode voltage asymmetry. Radio-frequency properties are studied and optimized for reducing power loss with Microwave Studio (MWS). Tuning of the field flatness and frequency is investigated in principle.
文摘A 30-MeV femto-second electron linac is built at the Shanghai Institute of Applied Physics, which can produce high power, coherent THz undulator radiation. We report the experimental facility and measurement of the power, frequency spectrum. First experiments show the averaged power at THz to be about 20mW.
基金Supported by the Foundation of China Academy of Engineering Physics under Grant No 10576040, and the National Natural Science Foundation of China under Grant No 10705054.
文摘Accelerator mass spectrometry (AMS) is one of the most promising methods to detect minute amounts of 182Hf. However, the sensitivity of 5×10^-11 for ^182Hf/180Hf obtained previously by the AMS method at China Institute of Atomic Energy (CIAE) cannot meet the requirement of some applications. We present some new improvements of measurement method for AMS measurement of 182Hf at the CIAE HI?13 tandem accelerator system. As a result, a sensitivity of 1.0×10^-11 for 182Hf/180Hf is achieved.
基金Supported by the National Key Basic Research Program of China under Grant No 2006CB806004, the National Natural Science Foundation of China under Grant Nos 10675155 and 10834008, Scientific Research Foundation for Awarder of Excellent Doctor Thesis, and President Award of Chinese Academy of Sciences (No 0801051-X00).
文摘Two dimensional particle-in-cell simulations are taken to study the interaction of a circularly polarized laser pulse with a nano-scale micro-structured target. The protons which are doped in the rear side of the target experience the electrostatic fields caused by both the radiation pressure driven shock and the target normal sheath at the rear side of the target. A quasimonoenergetic proton bunch with central energy of about 11MeV and energy spread of ∆ ε/ε about 0.18 is achieved by using a 3.45×1019 W/cm2, 66fs laser pulse. A comparison with the case of linearly polarized laser pulse and the same target condition is considered.
文摘For heating the tokamak plasma effectively, the ion source must be capable of producing ions with high proton ratio. The proton ratio, which is found to be more than 65.6% at the ion current of 19.6A with the extraction voltage of 39.6 k V, is measured with an image spectrograph by Doppler shift effect of Balmer-α-radiation spectrum emitted from fast hydrogen particles. The tendency of proton ratio with the ion density in experiment is almost the same as the mode devised by Zhang et al. Okumura et al. only gave the affection of the plasma volume and ion loss area on the proton ratio, but the relationship between the ion density in chamber and the proton ratio was not presented. We give the relationship.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10734140, 10874156 and 10875109.
文摘An experimental measurement of radiatively heated iron plasma transmission spectra was performed on Shenguang II laser facility. In the measurement, the self?emission spectrum, the backlighting spectrum, and the absorption spectrum were imaged with a flat filed grating and recorded on a gated micro channel plate detector to obtain the time-resolved transmission spectra in the range 10-20 ? (approximately 0.6-1.3 keV). Experimental results are compared with the calculation results of an unsolved transition array (UTA) code. The time-dependent relative shift in the positions of the 2p-3d transmission array is interpreted in terms of the plasma temperature variations.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos 10775069 and 10935001, and the Research Fund for the Doctoral Program of Higher Education under Grant No 200802840009.
文摘By means of the EOS of QCD at zero temperature and finite quark chemical potential we proposed [Phys. Rev. D 78 (2008) 054001] in the framework of rainbow-ladder approximation of Dyson-Schwinger approach, we investigate the structure of quark star and its property. It is found that the mass-radius relation in our model is very different from that of usual quark star models, but similar to neutron star models. The obtained mass of quark star is about 1.75M⊙- 2.2M⊙. The obtained radius of quark star is 22 - 26 km, which is obviously larger than the results in other models. The reason for this discrepancy is analyzed.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos 10775069 and 10935001, and the Research Fund for the Doctoral Program of Higher Education under Grant Nos 20060284020 and 20080284020.
文摘We use the direct method proposed by He et al. [Phys. Lett. B 680 (2009) 432) to calculate the quark-number susceptibility (QNS) at finite temperature and the chemical potential in the quasi-particle model. In our approach the QNS is given by a formula solely involving the dressed quark propagator at finite chemical potential μ and temperature Τ. The QNS at finite μ and Τ is calculated in the quasi-particle model. It is found that at high temperatures the QNS tends to the ideal quark gas result. At very small temperatures the QNS vanishes. This vanishing behavior in the low-temperature region is consistent with the lattice results. For μ∈ [0,180] MeV, our results show that there exists a rapid increase of QNS near some temperatures. The temperature at which the rapid increase occurs shifts to smaller values with the increasing quark chemical potential. This rapid increase could be regarded as a signal of a crossover.
文摘Specific activity of primordial radionuclides and associated radiation hazards due to 40K, 226Ra, and 232Th have been measured in backed red brick samples, collected from five highly populated areas of the North West Frontier Province of Pakistan. For the detection, analysis and data acquisition, a high purity germanium detector was used. Associated external doses were calculated using a Monte Carlo neutron photon transport code. A theoretical model to determine the gamma dose rate at 1 m height from the floor, made of bricks, was employed for the calculation of mass attenuation coefficient and self-absorption in the floor for the gamma energies of these radionuclides and their progeny. Monte Carlo simulation shows that in this study the floor, having more than an effective thickness of 15 cm, contributes very little to the external gamma dose rate. The values of the external dose rate and annual effective dose are found to be much lower than the world average as well as from other countries of the world.
文摘The elliptic motion of particle in the fields of the inhomogeneous plane wavs that are generated on a liquid thermoviscoelastic solid interface is studied.. Calculations show that the ellipticity of the motion of Particle is related to the incident angle that the homogeneous plane wave incidents upon the interface. The influeree of viscous properties of solid on the ellipticity of particle's motion is small and shows near the critical angles of longitudinal and transversal wavs. Under the incidence at Rayleigh angle, the change of the ellipticity of motion of the particle is periodic in the wake of its Rayleigh wavelength and its elliptic locus is couoter clockwise and clockwise rotation periodically.