期刊文献+
共找到5,759篇文章
< 1 2 250 >
每页显示 20 50 100
Identifying influential spreaders in social networks: A two-stage quantum-behaved particle swarm optimization with Lévy flight
1
作者 卢鹏丽 揽继茂 +3 位作者 唐建新 张莉 宋仕辉 朱虹羽 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期743-754,共12页
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ... The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms. 展开更多
关键词 social networks influence maximization metaheuristic optimization quantum-behaved particle swarm optimization Lévy flight
下载PDF
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
2
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
下载PDF
A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection
3
作者 Jyun-Guo Wang 《Computer Systems Science & Engineering》 2024年第5期1149-1170,共22页
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t... In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%. 展开更多
关键词 Double interactively recurrent fuzzy cerebellar model articulation controller(D-IRFCMAC) improved particle swarm optimization(IPSO) fall detection
下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
4
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) particle swarm optimization(PSO) Convolutional neural network(CNN)
下载PDF
Neural network hyperparameter optimization based on improved particle swarm optimization
5
作者 谢晓燕 HE Wanqi +1 位作者 ZHU Yun YU Jinhao 《High Technology Letters》 EI CAS 2023年第4期427-433,共7页
Hyperparameter optimization is considered as one of the most challenges in deep learning and dominates the precision of model in a certain.Recent proposals tried to solve this issue through the particle swarm optimiza... Hyperparameter optimization is considered as one of the most challenges in deep learning and dominates the precision of model in a certain.Recent proposals tried to solve this issue through the particle swarm optimization(PSO),but its native defect may result in the local optima trapped and convergence difficulty.In this paper,the genetic operations are introduced to the PSO,which makes the best hyperparameter combination scheme for specific network architecture be located easier.Spe-cifically,to prevent the troubles caused by the different data types and value scopes,a mixed coding method is used to ensure the effectiveness of particles.Moreover,the crossover and mutation opera-tions are added to the process of particles updating,to increase the diversity of particles and avoid local optima in searching.Verified with three benchmark datasets,MNIST,Fashion-MNIST,and CIFAR10,it is demonstrated that the proposed scheme can achieve accuracies of 99.58%,93.39%,and 78.96%,respectively,improving the accuracy by about 0.1%,0.5%,and 2%,respectively,compared with that of the PSO. 展开更多
关键词 hyperparameter optimization particle swarm optimization(PSO)algorithm neu-ral network
下载PDF
Forecasting of Software Reliability Using Neighborhood Fuzzy Particle Swarm Optimization Based Novel Neural Network 被引量:11
6
作者 Pratik Roy Ghanshaym Singha Mahapatra Kashi Nath Dey 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1365-1383,共19页
This paper proposes an artificial neural network(ANN) based software reliability model trained by novel particle swarm optimization(PSO) algorithm for enhanced forecasting of the reliability of software. The proposed ... This paper proposes an artificial neural network(ANN) based software reliability model trained by novel particle swarm optimization(PSO) algorithm for enhanced forecasting of the reliability of software. The proposed ANN is developed considering the fault generation phenomenon during software testing with the fault complexity of different levels. We demonstrate the proposed model considering three types of faults residing in the software. We propose a neighborhood based fuzzy PSO algorithm for competent learning of the proposed ANN using software failure data. Fitting and prediction performances of the neighborhood fuzzy PSO based proposed neural network model are compared with the standard PSO based proposed neural network model and existing ANN based software reliability models in the literature through three real software failure data sets. We also compare the performance of the proposed PSO algorithm with the standard PSO algorithm through learning of the proposed ANN. Statistical analysis shows that the neighborhood fuzzy PSO based proposed neural network model has comparatively better fitting and predictive ability than the standard PSO based proposed neural network model and other ANN based software reliability models. Faster release of software is achievable by applying the proposed PSO based neural network model during the testing period. 展开更多
关键词 Artificial neural network(ANN) fuzzy particle swarm optimization(PSO) RELIABILITY prediction software RELIABILITY
下载PDF
Improved Particle Swarm Optimization for Parameter Identification of Permanent Magnet Synchronous Motor
7
作者 Shuai Zhou Dazhi Wang +2 位作者 Yongliang Ni Keling Song Yanming Li 《Computers, Materials & Continua》 SCIE EI 2024年第5期2187-2207,共21页
In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parame... In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness. 展开更多
关键词 Transformation function filled function fuzzy particle swarm optimization algorithm permanent magnet synchronous motor parameter identification
下载PDF
Accelerated Particle Swarm Optimization Algorithm for Efficient Cluster Head Selection in WSN
8
作者 Imtiaz Ahmad Tariq Hussain +3 位作者 Babar Shah Altaf Hussain Iqtidar Ali Farman Ali 《Computers, Materials & Continua》 SCIE EI 2024年第6期3585-3629,共45页
Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe... Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks. 展开更多
关键词 Wireless sensor network cluster head selection low energy adaptive clustering hierarchy accelerated particle swarm optimization
下载PDF
A fuzzy neural network evolved by particle swarm optimization 被引量:1
9
作者 彭志平 彭宏 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第3期316-321,共6页
A cooperative system of a fuzzy logic model and a fuzzy neural network(CSFLMFNN)is proposed,in which a fuzzy logic model is acquired from domain experts and a fuzzy neural network is generated and prewired according t... A cooperative system of a fuzzy logic model and a fuzzy neural network(CSFLMFNN)is proposed,in which a fuzzy logic model is acquired from domain experts and a fuzzy neural network is generated and prewired according to the model.Then PSO-CSFLMFNN is constructed by introducing particle swarm optimization(PSO)into the cooperative system instead of the commonly used evolutionary algorithms to evolve the prewired fuzzy neural network.The evolutionary fuzzy neural network implements accuracy fuzzy inference without rule matching.PSO-CSFLMFNN is applied to the intelligent fault diagnosis for a petrochemical engineering equipment,in which the cooperative system is proved to be effective.It is shown by the applied results that the performance of the evolutionary fuzzy neural network outperforms remarkably that of the one evolved by genetic algorithm in the convergence rate and the generalization precision. 展开更多
关键词 fuzzy neural network EVOLVING particle swarm optimization intelligent fault diagnosis
下载PDF
Scale adaptive fitness evaluation‐based particle swarm optimisation for hyperparameter and architecture optimisation in neural networks and deep learning 被引量:2
10
作者 Ye‐Qun Wang Jian‐Yu Li +2 位作者 Chun‐Hua Chen Jun Zhang Zhi‐Hui Zhan 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期849-862,共14页
Research into automatically searching for an optimal neural network(NN)by optimi-sation algorithms is a significant research topic in deep learning and artificial intelligence.However,this is still challenging due to ... Research into automatically searching for an optimal neural network(NN)by optimi-sation algorithms is a significant research topic in deep learning and artificial intelligence.However,this is still challenging due to two issues:Both the hyperparameter and ar-chitecture should be optimised and the optimisation process is computationally expen-sive.To tackle these two issues,this paper focusses on solving the hyperparameter and architecture optimization problem for the NN and proposes a novel light‐weight scale‐adaptive fitness evaluation‐based particle swarm optimisation(SAFE‐PSO)approach.Firstly,the SAFE‐PSO algorithm considers the hyperparameters and architectures together in the optimisation problem and therefore can find their optimal combination for the globally best NN.Secondly,the computational cost can be reduced by using multi‐scale accuracy evaluation methods to evaluate candidates.Thirdly,a stagnation‐based switch strategy is proposed to adaptively switch different evaluation methods to better balance the search performance and computational cost.The SAFE‐PSO algorithm is tested on two widely used datasets:The 10‐category(i.e.,CIFAR10)and the 100−cate-gory(i.e.,CIFAR100).The experimental results show that SAFE‐PSO is very effective and efficient,which can not only find a promising NN automatically but also find a better NN than compared algorithms at the same computational cost. 展开更多
关键词 deep learning evolutionary computation hyperparameter and architecture optimisation neural networks particle swarm optimisation scale‐adaptive fitness evaluation
下载PDF
BN-GEPSO:Learning Bayesian Network Structure Using Generalized Particle Swarm Optimization
11
作者 Muhammad Saad Salman Ibrahim M.Almanjahie +1 位作者 AmanUllah Yasin Ammara Nawaz Cheema 《Computers, Materials & Continua》 SCIE EI 2023年第5期4217-4229,共13页
At present Bayesian Networks(BN)are being used widely for demonstrating uncertain knowledge in many disciplines,including biology,computer science,risk analysis,service quality analysis,and business.But they suffer fr... At present Bayesian Networks(BN)are being used widely for demonstrating uncertain knowledge in many disciplines,including biology,computer science,risk analysis,service quality analysis,and business.But they suffer from the problem that when the nodes and edges increase,the structure learning difficulty increases and algorithms become inefficient.To solve this problem,heuristic optimization algorithms are used,which tend to find a near-optimal answer rather than an exact one,with particle swarm optimization(PSO)being one of them.PSO is a swarm intelligence-based algorithm having basic inspiration from flocks of birds(how they search for food).PSO is employed widely because it is easier to code,converges quickly,and can be parallelized easily.We use a recently proposed version of PSO called generalized particle swarm optimization(GEPSO)to learn bayesian network structure.We construct an initial directed acyclic graph(DAG)by using the max-min parent’s children(MMPC)algorithm and cross relative average entropy.ThisDAGis used to create a population for theGEPSO optimization procedure.Moreover,we propose a velocity update procedure to increase the efficiency of the algorithmic search process.Results of the experiments show that as the complexity of the dataset increases,our algorithm Bayesian network generalized particle swarm optimization(BN-GEPSO)outperforms the PSO algorithm in terms of the Bayesian information criterion(BIC)score. 展开更多
关键词 Bayesian network structure learning particle swarm optimization
下载PDF
Energy Proficient Reduced Coverage Set with Particle Swarm Optimization for Distributed Sensor Network
12
作者 T.V.Chithra A.Milton 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1611-1623,共13页
Retransmission avoidance is an essential need for any type of wireless communication.As retransmissions induce the unnecessary presence of redundant data in every accessible node.As storage capacity is symmetrical to ... Retransmission avoidance is an essential need for any type of wireless communication.As retransmissions induce the unnecessary presence of redundant data in every accessible node.As storage capacity is symmetrical to the size of the memory,less storage capacity is experienced due to the restricted size of the respective node.In this proposed work,we have discussed the integration of the Energy Proficient Reduced Coverage Set with Particle Swarm Optimization(PSO).PSO is a metaheuristic global search enhancement technique that promotes the searching of the best nodes in the search space.PSO is integrated with a Reduced Coverage Set,to obtain an optimal path with only high-power transmitting nodes.Energy Proficient Reduced Coverage Set with PSO constructs a set of only best nodes based on the fitness solution,to cover the whole network.The proposed algorithm has experimented with a different number of nodes.Comparison has been made between original and improved algorithm shows that improved algorithm performs better than the existing by reducing the redundant packet transmissions by 18%~40%,thereby increasing the network lifetime. 展开更多
关键词 Wireless sensor network reduced coverage set swarm intelligence particle swarm optimization energy consumption
下载PDF
Optimal Location and Sizing of Distributed Generator via Improved Multi-Objective Particle Swarm Optimization in Active Distribution Network Considering Multi-Resource
13
作者 Guobin He Rui Su +5 位作者 Jinxin Yang Yuanping Huang Huanlin Chen Donghui Zhang Cangtao Yang Wenwen Li 《Energy Engineering》 EI 2023年第9期2133-2154,共22页
In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distribut... In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively. 展开更多
关键词 Active distribution network multi-resource penetration operation enhancement particle swarm optimization multi-objective optimization
下载PDF
Using particle swarm optimization algorithm in an artificial neural network to forecast the strength of paste filling material 被引量:24
14
作者 CHANG Qing-liang ZHOU Hua-qiang HOU Chao-jiong 《Journal of China University of Mining and Technology》 EI 2008年第4期551-555,共5页
In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by appl... In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines. 展开更多
关键词 mining engineering paste filling material neural network particle swarm optimized algorithm prediction
下载PDF
Prediction of Flash Point Temperature of Organic Compounds Using a Hybrid Method of Group Contribution + Neural Network + Particle Swarm Optimization 被引量:8
15
作者 Juan A. Lazzus 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第5期817-823,共7页
The flash points of organic compounds were estimated using a hybrid method that includes a simple group contribution method (GCM) implemented in an artificial neural network (ANN) with particle swarm optimization (PSO... The flash points of organic compounds were estimated using a hybrid method that includes a simple group contribution method (GCM) implemented in an artificial neural network (ANN) with particle swarm optimization (PSO). Different topologies of a multilayer neural network were studied and the optimum architecture was determined. Property data of 350 compounds were used for training the network. To discriminate different substances the molecular structures defined by the concept of the classical group contribution method were given as input variables. The capabilities of the network were tested with 155 substances not considered in the training step. The study shows that the proposed GCM+ANN+PSO method represent an excellent alternative for the estimation of flash points of organic compounds with acceptable accuracy (AARD = 1.8%; AAE = 6.2 K). 展开更多
关键词 flash point group contribution method artificial neural networks particle swarm optimization property estimation
下载PDF
A hybrid particle swarm optimization approach with neural network and set pair analysis for transmission network planning 被引量:2
16
作者 刘吉成 颜苏莉 乞建勋 《Journal of Central South University》 SCIE EI CAS 2008年第S2期321-326,共6页
Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, networ... Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA. 展开更多
关键词 transmission network planning SET PAIR analysis particle swarm optimization neural network
下载PDF
Optimization of Laser Ablation Technology for PDPhSM Matrix Nanocomposite Thin Film by Artificial Neural Networks-particle Swarm Algorithm 被引量:3
17
作者 唐普洪 宋仁国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期188-193,共6页
A new thermal ring-opening polymerization technique for 1, 1, 3, 3-tetra-ph enyl-1, 3-disilacyclobutane (TPDC) based on the use of metal nanoparticles produced by pulsed laser ablation was investigated. This method ... A new thermal ring-opening polymerization technique for 1, 1, 3, 3-tetra-ph enyl-1, 3-disilacyclobutane (TPDC) based on the use of metal nanoparticles produced by pulsed laser ablation was investigated. This method facilitates the synthesis of polydiphenysilylenemethyle (PDPhSM) thin film, which is difficult to make by conventional methods because of its insolubility and high melting point. TPDC was first evaporated on silicon substrates and then exposed to metal nanoparticles deposition by pulsed laser ablation prior to heat treatment.The TPDC films with metal nanoparticles were heated in an electric furnace in air atmosphere to induce ring-opening polymerization of TPDC. The film thicknesses before and after polymerization were measured by a stylus profilometer. Since the polymerization process competes with re-evaporation of TPDC during the heating, the thickness ratio of the polymer to the monomer was defined as the polymerization efficiency, which depends greatly on the technology conditions. Therefore, a well trained radial base function neural network model was constructed to approach the complex nonlinear relationship. Moreover, a particle swarm algorithm was firstly introduced to search for an optimum technology directly from RBF neural network model. This ensures that the fabrication of thin film with appropriate properties using pulsed laser ablation requires no in-depth understanding of the entire behavior of the technology conditions. 展开更多
关键词 nanocomposite thin film pulsed laser deposition(PLD) artificial neural net- works(ANN) particle swarm optimization (PSO)
下载PDF
Surface Quality Evaluation of Fluff Fabric Based on Particle Swarm Optimization Back Propagation Neural Network 被引量:1
18
作者 MA Qiurui LIN Qiangqiang JIN Shoufeng 《Journal of Donghua University(English Edition)》 EI CAS 2019年第6期539-546,共8页
Aiming at the problem that back propagation(BP)neural network predicts the low accuracy rate of fluff fabric after fluffing process,a BP neural network model optimized by particle swarm optimization(PSO)algorithm is p... Aiming at the problem that back propagation(BP)neural network predicts the low accuracy rate of fluff fabric after fluffing process,a BP neural network model optimized by particle swarm optimization(PSO)algorithm is proposed.The sliced image is obtained by the principle of light-cutting imaging.The fluffy region of the adaptive image segmentation is extracted by the Freeman chain code principle.The upper edge coordinate information of the fabric is subjected to one-dimensional discrete wavelet decomposition to obtain high frequency information and low frequency information.After comparison and analysis,the BP neural network was trained by high frequency information,and the PSO algorithm was used to optimize the BP neural network.The optimized BP neural network has better weights and thresholds.The experimental results show that the accuracy of the optimized BP neural network after applying high-frequency information training is 97.96%,which is 3.79%higher than that of the unoptimized BP neural network,and has higher detection accuracy. 展开更多
关键词 WOOL FABRIC feature extraction WAVELET TRANSFORM particle swarm optimization(PSO) back propagation(BP)neural network
下载PDF
Quantum Particle Swarm Optimization Based Convolutional Neural Network for Handwritten Script Recognition 被引量:1
19
作者 Reya Sharma Baijnath Kaushik +2 位作者 Naveen Kumar Gondhi Muhammad Tahir Mohammad Khalid Imam Rahmani 《Computers, Materials & Continua》 SCIE EI 2022年第6期5855-5873,共19页
Even though several advances have been made in recent years,handwritten script recognition is still a challenging task in the pattern recognition domain.This field has gained much interest lately due to its diverse ap... Even though several advances have been made in recent years,handwritten script recognition is still a challenging task in the pattern recognition domain.This field has gained much interest lately due to its diverse application potentials.Nowadays,different methods are available for automatic script recognition.Among most of the reported script recognition techniques,deep neural networks have achieved impressive results and outperformed the classical machine learning algorithms.However,the process of designing such networks right from scratch intuitively appears to incur a significant amount of trial and error,which renders them unfeasible.This approach often requires manual intervention with domain expertise which consumes substantial time and computational resources.To alleviate this shortcoming,this paper proposes a new neural architecture search approach based on meta-heuristic quantum particle swarm optimization(QPSO),which is capable of automatically evolving the meaningful convolutional neural network(CNN)topologies.The computational experiments have been conducted on eight different datasets belonging to three popular Indic scripts,namely Bangla,Devanagari,and Dogri,consisting of handwritten characters and digits.Empirically,the results imply that the proposed QPSO-CNN algorithm outperforms the classical and state-of-the-art methods with faster prediction and higher accuracy. 展开更多
关键词 Neuro-evolution quantum particle swarm optimization deep learning convolutional neural networks handwriting recognition
下载PDF
Temperature prediction model for a high-speed motorized spindle based on back-propagation neural network optimized by adaptive particle swarm optimization 被引量:1
20
作者 Lei Chunli Zhao Mingqi +2 位作者 Liu Kai Song Ruizhe Zhang Huqiang 《Journal of Southeast University(English Edition)》 EI CAS 2022年第3期235-241,共7页
To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is propos... To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools. 展开更多
关键词 temperature prediction high-speed motorized spindle particle swarm optimization algorithm back-propagation neural network ROBUSTNESS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部