通过改进粒子群算法(particle swarm optimization,PSO)优化长短期记忆神经网络算法(long short-term memory,LSTM)的参数,提出了一种基于改进PSO-LSTM算法的直驱式风电机组运行状态监测方法。首先将数据采集与监控系统(supervisory con...通过改进粒子群算法(particle swarm optimization,PSO)优化长短期记忆神经网络算法(long short-term memory,LSTM)的参数,提出了一种基于改进PSO-LSTM算法的直驱式风电机组运行状态监测方法。首先将数据采集与监控系统(supervisory control and data acquisition,SCADA)采集到的数据利用随机森林的方法进行特征筛选,得到模型的输入参数;其次采用改进PSO-LSTM网络建立有功功率的预测模型,计算出预测值与实际值的残差,根据残差的分布来确实直驱式风电机组的状态;最后利用某风电机组SCADA数据对所提预测模型进行验证分析,结果表明,PSO-LSTM预测模型相比其他三种预测模型,具有较高的预测精度,并在状态异常后最短时间内发出故障警报,保证电场的健康稳定运行。展开更多
The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant...The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models.展开更多
针对上肢肌音信号(Mechanomyography,MMG)动作识别准确率不高的问题,提出一种基于粒子群算法(PSO)与长短期记忆网络相结合的混合模型(Particle Swarm Optimization-Long Short Term Memory,PSO-LSTM)的动作识别方法。采用5通道传感器对...针对上肢肌音信号(Mechanomyography,MMG)动作识别准确率不高的问题,提出一种基于粒子群算法(PSO)与长短期记忆网络相结合的混合模型(Particle Swarm Optimization-Long Short Term Memory,PSO-LSTM)的动作识别方法。采用5通道传感器对受试者进行上肢肌音信号采集,使用巴特沃斯滤波(Butterworth Filter)等方法对肌音信号进行预处理,并进行特征提取;构建基于PSO-LSTM的上肢肌音信号识别模型并进行模型训练和测试;最后从不同测度对比了长短期记忆(LSTM)模型、麻雀搜索算法(Sparrow Search Algorithm,SSA)优化的LSTM模型(Sparrow Search Algorithm-Long Short Term Memory, SSA-LSTM)以及PSO-LSTM模型的实验结果。结果表明,PSO-LSTM模型的准确度均高于LSTM、 SSA-LSTM模型,达到96.9%左右,在迭代损失、迭代速度等方面也优于LSTM、SSA-LSTM模型,从而证明了该模型用于上肢肌音信号识别的优越性。展开更多
Physiological signal based biometric analysis has recently attracted attention as a means of meeting increasing privacy and security requirements.The real-time nature of an electrocardiogram(ECG)and the hidden nature ...Physiological signal based biometric analysis has recently attracted attention as a means of meeting increasing privacy and security requirements.The real-time nature of an electrocardiogram(ECG)and the hidden nature of the information make it highly resistant to attacks.This paper focuses on three major bottlenecks of existing deep learning driven approaches:the lengthy time requirements for optimizing the hyperparameters,the slow and computationally intense identification process,and the unstable and complicated nature of ECG acquisition.We present a novel deep neural network framework for learning human identification feature representations directly from ECG time series.The proposed framework integrates deep bidirectional long short-term memory(BLSTM)and adaptive particle swarm optimization(APSO).The overall approach not only avoids the inefficient and experience-dependent search for hyperparameters,but also fully exploits the spatial information of ordinal local features and the memory characteristics of a recognition algorithm.The effectiveness of the proposed approach is thoroughly evaluated in two ECG datasets,using two protocols,simulating the influence of electrode placement and acquisition sessions in identification.Comparing four recurrent neural network structures and four classical machine learning and deep learning algorithms,we prove the superiority of the proposed algorithm in minimizing overfitting and self-learning of time series.The experimental results demonstrated an average identification rate of 97.71%,99.41%,and 98.89% in training,validation,and test sets,respectively.Thus,this study proves that the application of APSO and LSTM techniques to biometric human identification can achieve a lower algorithm engineering effort and higher capacity for generalization.展开更多
In petroleum domain,optimizing hydrocarbon production is essential because it does not only ensure the economic prospects of the petroleum companies,but also fulfills the increasing global demand of energy.However,app...In petroleum domain,optimizing hydrocarbon production is essential because it does not only ensure the economic prospects of the petroleum companies,but also fulfills the increasing global demand of energy.However,applying numerical reservoir simulation(NRS)to optimize production can induce high computational footprint.Proxy models are suggested to alleviate this challenge because they are computationally less demanding and able to yield reasonably accurate results.In this paper,we demonstrated how a machine learning technique,namely long short-term memory(LSTM),was applied to develop proxies of a 3D reservoir model.Sampling techniques were employed to create numerous simulation cases which served as the training database to establish the proxies.Upon blind validating the trained proxies,we coupled these proxies with particle swarm optimization to conduct production optimization.Both training and blind validation results illustrated that the proxies had been excellently developed with coefficient of determination,R2 of 0.99.We also compared the optimization results produced by NRS and the proxies.The comparison recorded a good level of accuracy that was within 3%error.The proxies were also computationally 3 times faster than NRS.Hence,the proxies have served their practical purposes in this study.展开更多
文摘通过改进粒子群算法(particle swarm optimization,PSO)优化长短期记忆神经网络算法(long short-term memory,LSTM)的参数,提出了一种基于改进PSO-LSTM算法的直驱式风电机组运行状态监测方法。首先将数据采集与监控系统(supervisory control and data acquisition,SCADA)采集到的数据利用随机森林的方法进行特征筛选,得到模型的输入参数;其次采用改进PSO-LSTM网络建立有功功率的预测模型,计算出预测值与实际值的残差,根据残差的分布来确实直驱式风电机组的状态;最后利用某风电机组SCADA数据对所提预测模型进行验证分析,结果表明,PSO-LSTM预测模型相比其他三种预测模型,具有较高的预测精度,并在状态异常后最短时间内发出故障警报,保证电场的健康稳定运行。
文摘The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models.
文摘针对上肢肌音信号(Mechanomyography,MMG)动作识别准确率不高的问题,提出一种基于粒子群算法(PSO)与长短期记忆网络相结合的混合模型(Particle Swarm Optimization-Long Short Term Memory,PSO-LSTM)的动作识别方法。采用5通道传感器对受试者进行上肢肌音信号采集,使用巴特沃斯滤波(Butterworth Filter)等方法对肌音信号进行预处理,并进行特征提取;构建基于PSO-LSTM的上肢肌音信号识别模型并进行模型训练和测试;最后从不同测度对比了长短期记忆(LSTM)模型、麻雀搜索算法(Sparrow Search Algorithm,SSA)优化的LSTM模型(Sparrow Search Algorithm-Long Short Term Memory, SSA-LSTM)以及PSO-LSTM模型的实验结果。结果表明,PSO-LSTM模型的准确度均高于LSTM、 SSA-LSTM模型,达到96.9%左右,在迭代损失、迭代速度等方面也优于LSTM、SSA-LSTM模型,从而证明了该模型用于上肢肌音信号识别的优越性。
基金Project supported by the Zhejiang Province Public Welfare Technology Application Research Project(No.LGG20F010008)the National Natural Science Foundation of China(No.61571173)the Welfare Project of the Science Technology Department of Zhejiang Province,China(No.LGG18F010012)。
文摘Physiological signal based biometric analysis has recently attracted attention as a means of meeting increasing privacy and security requirements.The real-time nature of an electrocardiogram(ECG)and the hidden nature of the information make it highly resistant to attacks.This paper focuses on three major bottlenecks of existing deep learning driven approaches:the lengthy time requirements for optimizing the hyperparameters,the slow and computationally intense identification process,and the unstable and complicated nature of ECG acquisition.We present a novel deep neural network framework for learning human identification feature representations directly from ECG time series.The proposed framework integrates deep bidirectional long short-term memory(BLSTM)and adaptive particle swarm optimization(APSO).The overall approach not only avoids the inefficient and experience-dependent search for hyperparameters,but also fully exploits the spatial information of ordinal local features and the memory characteristics of a recognition algorithm.The effectiveness of the proposed approach is thoroughly evaluated in two ECG datasets,using two protocols,simulating the influence of electrode placement and acquisition sessions in identification.Comparing four recurrent neural network structures and four classical machine learning and deep learning algorithms,we prove the superiority of the proposed algorithm in minimizing overfitting and self-learning of time series.The experimental results demonstrated an average identification rate of 97.71%,99.41%,and 98.89% in training,validation,and test sets,respectively.Thus,this study proves that the application of APSO and LSTM techniques to biometric human identification can achieve a lower algorithm engineering effort and higher capacity for generalization.
文摘In petroleum domain,optimizing hydrocarbon production is essential because it does not only ensure the economic prospects of the petroleum companies,but also fulfills the increasing global demand of energy.However,applying numerical reservoir simulation(NRS)to optimize production can induce high computational footprint.Proxy models are suggested to alleviate this challenge because they are computationally less demanding and able to yield reasonably accurate results.In this paper,we demonstrated how a machine learning technique,namely long short-term memory(LSTM),was applied to develop proxies of a 3D reservoir model.Sampling techniques were employed to create numerous simulation cases which served as the training database to establish the proxies.Upon blind validating the trained proxies,we coupled these proxies with particle swarm optimization to conduct production optimization.Both training and blind validation results illustrated that the proxies had been excellently developed with coefficient of determination,R2 of 0.99.We also compared the optimization results produced by NRS and the proxies.The comparison recorded a good level of accuracy that was within 3%error.The proxies were also computationally 3 times faster than NRS.Hence,the proxies have served their practical purposes in this study.