Particle swarm optimization(PSO)is a stochastic computation tech-nique that has become an increasingly important branch of swarm intelligence optimization.However,like other evolutionary algorithms,PSO also suffers fr...Particle swarm optimization(PSO)is a stochastic computation tech-nique that has become an increasingly important branch of swarm intelligence optimization.However,like other evolutionary algorithms,PSO also suffers from premature convergence and entrapment into local optima in dealing with complex multimodal problems.Thus this paper puts forward an adaptive multi-updating strategy based particle swarm optimization(abbreviated as AMS-PSO).To start with,the chaotic sequence is employed to generate high-quality initial particles to accelerate the convergence rate of the AMS-PSO.Subsequently,according to the current iteration,different update schemes are used to regulate the particle search process at different evolution stages.To be specific,two different sets of velocity update strategies are utilized to enhance the exploration ability in the early evolution stage while the other two sets of velocity update schemes are applied to improve the exploitation capability in the later evolution stage.Followed by the unequal weightage of acceleration coefficients is used to guide the search for the global worst particle to enhance the swarm diversity.In addition,an auxiliary update strategy is exclusively leveraged to the global best particle for the purpose of ensuring the convergence of the PSO method.Finally,extensive experiments on two sets of well-known benchmark functions bear out that AMS-PSO outperforms several state-of-the-art PSOs in terms of solution accuracy and convergence rate.展开更多
A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly dec...A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly decreasing inertia weight technique (LDIW) and the mutative scale chaos optimization algorithm (MSCOA) are combined with standard PSO, which are used to balance the global and local exploration abilities and enhance the local searching abilities, respectively. In order to evaluate the performance of the new method, three benchmark functions are used. The simulation results confirm the proposed algorithm can greatly enhance the searching ability and effectively improve the premature convergence.展开更多
A new adaptive mutation particle swarm optimizer,which is based on the variance of the population's fitness,is presented in this paper.During the running time,the mutation probability for the current best particle...A new adaptive mutation particle swarm optimizer,which is based on the variance of the population's fitness,is presented in this paper.During the running time,the mutation probability for the current best particle is determined by two factors:the variance of the population's fitness and the current optimal solution.The ability of particle swarm optimization(PSO)algorithm to break away from the local optimum is greatly improved by the mutation.The experimental results show that the new algorithm not only has great advantage of convergence property over genetic algorithm and PSO,but can also avoid the premature convergence problem effectively.展开更多
In order to overcome the drawbacks of standard particle swarm optimization(PSO)algorithm,such as prematurity and easily trapping in local optimum,a modified PSO algorithm is proposed,in which special techniques,as glo...In order to overcome the drawbacks of standard particle swarm optimization(PSO)algorithm,such as prematurity and easily trapping in local optimum,a modified PSO algorithm is proposed,in which special techniques,as global best perturbation and inertia weight jump threshold are adopted.The convergence speed and accuracy of the algo-rithm are improved.The test by some benchmark problems shows that the proposed algorithm achieves relatively higher performance.Thereafter,the applications of the modified PSO in the radiation pattern synthesis of antenna arrays are presented.展开更多
为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷...为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。展开更多
光伏阵列输出在不同工况下具有单峰或多峰特性.针对因最大功率点跟踪(maximum power point tracking,简称MPPT)精度不高、跟踪时间较长而导致光伏发电效率低下的问题,提出一种改进的量子粒子群优化(quantum particle swarm optimization...光伏阵列输出在不同工况下具有单峰或多峰特性.针对因最大功率点跟踪(maximum power point tracking,简称MPPT)精度不高、跟踪时间较长而导致光伏发电效率低下的问题,提出一种改进的量子粒子群优化(quantum particle swarm optimization,简称QPSO)算法.采用Logistic混沌映射初始化粒子种群;在种群进化前期将反向学习策略引入惯性权重自适应调整的量子粒子群优化(dynamically changing weights quantum-behaved particle swarm optimization,简称DCWQPSO),扩大种群搜索范围,提高种群的全局搜索能力;在种群进化后期将模拟退火机制引入DCWQPSO,提高种群收敛速度,并对粒子群进行柯西变异,增强粒子的多样性,提升局部搜索能力.Matlab仿真结果表明:相对其他4种算法,该文提出的改进QPSO算法的跟踪时间更短、跟踪精度更高.因此,该文算法具有优越性.展开更多
The optimization of a water distribution network (WDN) is a highly nonlinear, multi-modal, and constrained combinatorial problem. Particle swarm opti- mization (PSO) has been shown to be a fast converging algorith...The optimization of a water distribution network (WDN) is a highly nonlinear, multi-modal, and constrained combinatorial problem. Particle swarm opti- mization (PSO) has been shown to be a fast converging algorithm for WDN optimization. An improved estimation of distribution algorithm (EDA) using historic best positions to construct a sample space is hybridized with PSO both in sequential and in parallel to improve population diversity control and avoid premature conver- gence. Two water distribution network benchmark exam- ples from the literature are adopted to evaluate the performance of the proposed hybrid algorithms. The experimental results indicate that the proposed algorithms achieved the literature record minimum (6.081 MS) for the small size Hanoi network. For the large size Balerma network, the parallel hybrid achieved a slightly lower minimum (1.921M) than the current literature reported best minimum (1.923MC). The average number of evaluations needed to achieve the minimum is one order smaller than most existing algorithms. With a fixed, small number of evaluations, the sequential hybrid outperforms the parallel hybrid showing its capability for fast convergence. The fitness and diversity of the populations were tracked for the proposed algorithms. The track record suggests that constructing an EDA sample space with historic best positions can improve diversity control significantly. Parallel hybridization also helps to improve diversity control yet its effect is relatively less significant.展开更多
基金sponsored by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01A16)the Program of the Applied Technology Research and Development of Kashi Prefecture(No.KS2021026).
文摘Particle swarm optimization(PSO)is a stochastic computation tech-nique that has become an increasingly important branch of swarm intelligence optimization.However,like other evolutionary algorithms,PSO also suffers from premature convergence and entrapment into local optima in dealing with complex multimodal problems.Thus this paper puts forward an adaptive multi-updating strategy based particle swarm optimization(abbreviated as AMS-PSO).To start with,the chaotic sequence is employed to generate high-quality initial particles to accelerate the convergence rate of the AMS-PSO.Subsequently,according to the current iteration,different update schemes are used to regulate the particle search process at different evolution stages.To be specific,two different sets of velocity update strategies are utilized to enhance the exploration ability in the early evolution stage while the other two sets of velocity update schemes are applied to improve the exploitation capability in the later evolution stage.Followed by the unequal weightage of acceleration coefficients is used to guide the search for the global worst particle to enhance the swarm diversity.In addition,an auxiliary update strategy is exclusively leveraged to the global best particle for the purpose of ensuring the convergence of the PSO method.Finally,extensive experiments on two sets of well-known benchmark functions bear out that AMS-PSO outperforms several state-of-the-art PSOs in terms of solution accuracy and convergence rate.
文摘A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly decreasing inertia weight technique (LDIW) and the mutative scale chaos optimization algorithm (MSCOA) are combined with standard PSO, which are used to balance the global and local exploration abilities and enhance the local searching abilities, respectively. In order to evaluate the performance of the new method, three benchmark functions are used. The simulation results confirm the proposed algorithm can greatly enhance the searching ability and effectively improve the premature convergence.
基金supported by the Gansu Natural Science Foundation (No.ZS011-A25-016-G).
文摘A new adaptive mutation particle swarm optimizer,which is based on the variance of the population's fitness,is presented in this paper.During the running time,the mutation probability for the current best particle is determined by two factors:the variance of the population's fitness and the current optimal solution.The ability of particle swarm optimization(PSO)algorithm to break away from the local optimum is greatly improved by the mutation.The experimental results show that the new algorithm not only has great advantage of convergence property over genetic algorithm and PSO,but can also avoid the premature convergence problem effectively.
文摘In order to overcome the drawbacks of standard particle swarm optimization(PSO)algorithm,such as prematurity and easily trapping in local optimum,a modified PSO algorithm is proposed,in which special techniques,as global best perturbation and inertia weight jump threshold are adopted.The convergence speed and accuracy of the algo-rithm are improved.The test by some benchmark problems shows that the proposed algorithm achieves relatively higher performance.Thereafter,the applications of the modified PSO in the radiation pattern synthesis of antenna arrays are presented.
文摘为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。
基金This work was supported by the National Science Foundation Award 0836046. The opinions expressed in this paper are solely those of the authors, and do not necessarily reflect the views of the funding agency.
文摘The optimization of a water distribution network (WDN) is a highly nonlinear, multi-modal, and constrained combinatorial problem. Particle swarm opti- mization (PSO) has been shown to be a fast converging algorithm for WDN optimization. An improved estimation of distribution algorithm (EDA) using historic best positions to construct a sample space is hybridized with PSO both in sequential and in parallel to improve population diversity control and avoid premature conver- gence. Two water distribution network benchmark exam- ples from the literature are adopted to evaluate the performance of the proposed hybrid algorithms. The experimental results indicate that the proposed algorithms achieved the literature record minimum (6.081 MS) for the small size Hanoi network. For the large size Balerma network, the parallel hybrid achieved a slightly lower minimum (1.921M) than the current literature reported best minimum (1.923MC). The average number of evaluations needed to achieve the minimum is one order smaller than most existing algorithms. With a fixed, small number of evaluations, the sequential hybrid outperforms the parallel hybrid showing its capability for fast convergence. The fitness and diversity of the populations were tracked for the proposed algorithms. The track record suggests that constructing an EDA sample space with historic best positions can improve diversity control significantly. Parallel hybridization also helps to improve diversity control yet its effect is relatively less significant.