期刊文献+
共找到159篇文章
< 1 2 8 >
每页显示 20 50 100
Adaptive Multi-Updating Strategy Based Particle Swarm Optimization
1
作者 Dongping Tian Bingchun Li +3 位作者 Jing Liu Chen Liu Ling Yuan Zhongzhi Shi 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2783-2807,共25页
Particle swarm optimization(PSO)is a stochastic computation tech-nique that has become an increasingly important branch of swarm intelligence optimization.However,like other evolutionary algorithms,PSO also suffers fr... Particle swarm optimization(PSO)is a stochastic computation tech-nique that has become an increasingly important branch of swarm intelligence optimization.However,like other evolutionary algorithms,PSO also suffers from premature convergence and entrapment into local optima in dealing with complex multimodal problems.Thus this paper puts forward an adaptive multi-updating strategy based particle swarm optimization(abbreviated as AMS-PSO).To start with,the chaotic sequence is employed to generate high-quality initial particles to accelerate the convergence rate of the AMS-PSO.Subsequently,according to the current iteration,different update schemes are used to regulate the particle search process at different evolution stages.To be specific,two different sets of velocity update strategies are utilized to enhance the exploration ability in the early evolution stage while the other two sets of velocity update schemes are applied to improve the exploitation capability in the later evolution stage.Followed by the unequal weightage of acceleration coefficients is used to guide the search for the global worst particle to enhance the swarm diversity.In addition,an auxiliary update strategy is exclusively leveraged to the global best particle for the purpose of ensuring the convergence of the PSO method.Finally,extensive experiments on two sets of well-known benchmark functions bear out that AMS-PSO outperforms several state-of-the-art PSOs in terms of solution accuracy and convergence rate. 展开更多
关键词 particle swarm optimization local optima acceleration coefficients swarm diversity premature convergence
下载PDF
A New Class of Hybrid Particle Swarm Optimization Algorithm 被引量:3
2
作者 Da-Qing Guo Yong-Jin Zhao +1 位作者 Hui Xiong Xiao Li 《Journal of Electronic Science and Technology of China》 2007年第2期149-152,共4页
A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly dec... A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly decreasing inertia weight technique (LDIW) and the mutative scale chaos optimization algorithm (MSCOA) are combined with standard PSO, which are used to balance the global and local exploration abilities and enhance the local searching abilities, respectively. In order to evaluate the performance of the new method, three benchmark functions are used. The simulation results confirm the proposed algorithm can greatly enhance the searching ability and effectively improve the premature convergence. 展开更多
关键词 particle swarm optimization (PSO) inertia weight CHAOS SCALE premature convergence benchmark function.
下载PDF
Particle Swarm Optimization with Adaptive Mutation 被引量:4
3
作者 LU Zhen-su HOU Zhi-rong DU Juan 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2006年第1期99-104,共6页
A new adaptive mutation particle swarm optimizer,which is based on the variance of the population's fitness,is presented in this paper.During the running time,the mutation probability for the current best particle... A new adaptive mutation particle swarm optimizer,which is based on the variance of the population's fitness,is presented in this paper.During the running time,the mutation probability for the current best particle is determined by two factors:the variance of the population's fitness and the current optimal solution.The ability of particle swarm optimization(PSO)algorithm to break away from the local optimum is greatly improved by the mutation.The experimental results show that the new algorithm not only has great advantage of convergence property over genetic algorithm and PSO,but can also avoid the premature convergence problem effectively. 展开更多
关键词 particle swarm adaptive mutation optimization premature convergence
原文传递
Pattern synthesis of antennas based on a modified particle swarm optimization algorithm
4
作者 JIN Ronghong YUAN Zhihao +2 位作者 GENG Junping FAN Yu LI Jiajing 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2007年第4期454-458,共5页
In order to overcome the drawbacks of standard particle swarm optimization(PSO)algorithm,such as prematurity and easily trapping in local optimum,a modified PSO algorithm is proposed,in which special techniques,as glo... In order to overcome the drawbacks of standard particle swarm optimization(PSO)algorithm,such as prematurity and easily trapping in local optimum,a modified PSO algorithm is proposed,in which special techniques,as global best perturbation and inertia weight jump threshold are adopted.The convergence speed and accuracy of the algo-rithm are improved.The test by some benchmark problems shows that the proposed algorithm achieves relatively higher performance.Thereafter,the applications of the modified PSO in the radiation pattern synthesis of antenna arrays are presented. 展开更多
关键词 particle swarm optimization(PSO)algorithm premature convergence array antennas patterns synthesis
原文传递
基于改进T分布烟花-粒子群算法的AUV全局路径规划
5
作者 刘志华 张冉 +2 位作者 郝梦男 安凯晨 陈嘉兴 《电子学报》 EI CAS CSCD 北大核心 2024年第9期3123-3134,共12页
针对传统粒子群算法在处理自主水下机器人(Autonomous Underwater Vehicle,AUV)全局路径规划时面临的寻优时间长、能耗高的问题,本文提出一种改进的T分布烟花-粒子群算法(T-distribution Fireworks-Particle Swarm Optimization Algorit... 针对传统粒子群算法在处理自主水下机器人(Autonomous Underwater Vehicle,AUV)全局路径规划时面临的寻优时间长、能耗高的问题,本文提出一种改进的T分布烟花-粒子群算法(T-distribution Fireworks-Particle Swarm Optimization Algorithm,TFWA-PSO),该算法融合了烟花算法的高效全局搜索能力和粒子群算法的快速局部寻优特性.在变异阶段,提出自适应T分布变异来扩大搜索范围,并在理论上证明了该变异方式能够使个体在局部最优解附近增强搜索能力.在选择阶段提出了适应度选择策略,淘汰适应度差的个体,解决了传统烟花算法易丢失优秀个体的问题,并对改进的T分布烟花算法与传统烟花算法的收敛速度进行对比.将改进算法的爆炸操作、变异操作和选择策略融合到粒子群算法中,对粒子群算法的速度更新公式进行了改进,同时从理论上对所改进的算法进行了收敛性证明.仿真实验结果表明,TFWA-PSO能够有效规划出一条最短路径,同时与给定的智能优化算法相比,TFWA-PSO在寻找最优路径的时间上平均降低了24.72%,能耗平均降低了17.33%,路径长度平均降低了16.96%. 展开更多
关键词 自主水下机器人 全局路径规划 烟花算法 粒子群算法 自适应T分布变异 收敛性证明
下载PDF
陷阱标记联合懒蚂蚁的自适应粒子群优化算法
6
作者 张伟 蒋岳峰 《系统仿真学报》 CAS CSCD 北大核心 2024年第7期1631-1642,共12页
为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷... 为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。 展开更多
关键词 粒子群优化算法 懒蚂蚁 陷阱标记 局部最优 过早收敛
下载PDF
基于AMCPSO优化Kriging插值的温度补偿方法研究
7
作者 张森 王大志 +3 位作者 黄晨涛 陈相吉 郑晓虎 刘梦哲 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第1期342-353,共12页
为了降低温度变化对转换力传感器测量精度的影响,提出一种自适应变异混沌粒子群算法(AMCPSO)优化Kriging插值的温度补偿算法(AMCPSO-Kriging)。研发转换力传感器,分析温度对传感器输出的影响,建立温度补偿标定实验平台,通过标定实验获... 为了降低温度变化对转换力传感器测量精度的影响,提出一种自适应变异混沌粒子群算法(AMCPSO)优化Kriging插值的温度补偿算法(AMCPSO-Kriging)。研发转换力传感器,分析温度对传感器输出的影响,建立温度补偿标定实验平台,通过标定实验获得建立温度补偿模型所需要的样本集,采用数据稀疏化方法对样本数据进行优化。通过Kriging插值构建了温度补偿模型,利用AMCPSO算法以交叉验证方式下模型预测产生的均方根误差和作为适应度函数,对Kriging插值中的范围参数θ和平滑度参数pk进行寻优求解,得到性能最佳的温度补偿模型。基于AMCPSO-Kriging温度补偿模型对转换力传感器的测量效果进行实验验证,与标准力传感器进行对比。实验结果表明:对样本数据进行稀疏化处理,算法平均运行时间从1076 s减少到6 s,提高了温度补偿算法的运行效率。在−20~70℃温度范围内,经过AMCPSO算法优化的Kriging模型有效提高了转换力传感器的测量精度,相比于未经AMCPSO算法优化的Kriging插值,转换力传感器测量的平均满量程误差从1.2%FS降低到0.6%FS。通过现场实验验证温度补偿的效果,转换力传感器测量的绝对误差在70 N以内,最大满量程误差为2.3%FS。所提出的温度补偿方法有效消除了温度对传感器测量精度的影响,满足铁路工况使用要求,对转换力传感器在铁路上实际运用具有重要价值。 展开更多
关键词 转换力传感器 温度补偿 标定实验 KRIGING插值 自适应变异混沌粒子群优化算法
下载PDF
引入混沌干扰机制的变异天牛群搜索算法
8
作者 李硕 《通信技术》 2024年第5期444-450,共7页
针对天牛须搜索(Beetle Antennae Search,BAS)算法收敛慢、精度低且容易陷入局部最优等缺陷,提出了一种引入混沌干扰机制的变异天牛群搜索算法(Chaotic Interference Mechanism of Mutation Beetle Swarm Optimization Algorithm,CMBSOA... 针对天牛须搜索(Beetle Antennae Search,BAS)算法收敛慢、精度低且容易陷入局部最优等缺陷,提出了一种引入混沌干扰机制的变异天牛群搜索算法(Chaotic Interference Mechanism of Mutation Beetle Swarm Optimization Algorithm,CMBSOA)。首先,应用粒子群(Particle Swarm Optimization,PSO)策略将天牛须搜索算法中的天牛个体扩展为天牛群,扩大算法的搜索范围,提高算法的全局搜索能力;其次,引入Logistic混沌映射机制对天牛群进行混沌扰动,使初始化的种群以随机方式均匀分布,以加快算法的收敛速度;最后,提出变异因子策略进行位置更新,使该算法更易跳出局部最优,增强算法的稳定性与精度。为了验证CMBSOA算法的有效性,将其与天牛群算法(Beetle Swarm Antennae Search,BSAS)及PSO通过2组单峰和3组多峰测试函数进行测试和对比,结果表明,CMBSOA算法具有较强的稳定性,此外还具有更优的精度和较快的收敛速度,且能最大限度地避免产生局部最优解问题。 展开更多
关键词 天牛须搜索算法 天牛群算法 粒子群优化 混沌扰动 变异因子
下载PDF
基于改进QPSO算法的光伏发电最大功率点跟踪
9
作者 方胜利 杨峰 +2 位作者 朱晓亮 马春艳 侯贸军 《安徽大学学报(自然科学版)》 CAS 北大核心 2023年第4期57-66,共10页
光伏阵列输出在不同工况下具有单峰或多峰特性.针对因最大功率点跟踪(maximum power point tracking,简称MPPT)精度不高、跟踪时间较长而导致光伏发电效率低下的问题,提出一种改进的量子粒子群优化(quantum particle swarm optimization... 光伏阵列输出在不同工况下具有单峰或多峰特性.针对因最大功率点跟踪(maximum power point tracking,简称MPPT)精度不高、跟踪时间较长而导致光伏发电效率低下的问题,提出一种改进的量子粒子群优化(quantum particle swarm optimization,简称QPSO)算法.采用Logistic混沌映射初始化粒子种群;在种群进化前期将反向学习策略引入惯性权重自适应调整的量子粒子群优化(dynamically changing weights quantum-behaved particle swarm optimization,简称DCWQPSO),扩大种群搜索范围,提高种群的全局搜索能力;在种群进化后期将模拟退火机制引入DCWQPSO,提高种群收敛速度,并对粒子群进行柯西变异,增强粒子的多样性,提升局部搜索能力.Matlab仿真结果表明:相对其他4种算法,该文提出的改进QPSO算法的跟踪时间更短、跟踪精度更高.因此,该文算法具有优越性. 展开更多
关键词 最大功率点跟踪 改进量子粒子群优化 LOGISTIC混沌映射 反向学习策略 模拟退火 柯西变异
下载PDF
Estimation of distribution algorithm enhanced particle swarm optimization for water distribution network optimization 被引量:1
10
作者 Xuewei QI Ke LI Walter D. POTTER 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第2期341-351,共11页
The optimization of a water distribution network (WDN) is a highly nonlinear, multi-modal, and constrained combinatorial problem. Particle swarm opti- mization (PSO) has been shown to be a fast converging algorith... The optimization of a water distribution network (WDN) is a highly nonlinear, multi-modal, and constrained combinatorial problem. Particle swarm opti- mization (PSO) has been shown to be a fast converging algorithm for WDN optimization. An improved estimation of distribution algorithm (EDA) using historic best positions to construct a sample space is hybridized with PSO both in sequential and in parallel to improve population diversity control and avoid premature conver- gence. Two water distribution network benchmark exam- ples from the literature are adopted to evaluate the performance of the proposed hybrid algorithms. The experimental results indicate that the proposed algorithms achieved the literature record minimum (6.081 MS) for the small size Hanoi network. For the large size Balerma network, the parallel hybrid achieved a slightly lower minimum (1.921M) than the current literature reported best minimum (1.923MC). The average number of evaluations needed to achieve the minimum is one order smaller than most existing algorithms. With a fixed, small number of evaluations, the sequential hybrid outperforms the parallel hybrid showing its capability for fast convergence. The fitness and diversity of the populations were tracked for the proposed algorithms. The track record suggests that constructing an EDA sample space with historic best positions can improve diversity control significantly. Parallel hybridization also helps to improve diversity control yet its effect is relatively less significant. 展开更多
关键词 particle swarm optimization (PSO) diversitycontrol estimation of distribution algorithm (EDA) waterdistribution network (WDN) premature convergence hybrid strategy
原文传递
一种多尺度协同变异的粒子群优化算法 被引量:48
11
作者 陶新民 刘福荣 +1 位作者 刘玉 童智靖 《软件学报》 EI CSCD 北大核心 2012年第7期1805-1815,共11页
为了改善粒子群算法易早熟收敛、精度低等缺点,提出一种多尺度协同变异的粒子群优化算法,并证明了该算法以概率1收敛到全局最优解.算法采用多尺度高斯变异机制实现局部解逃逸.在算法初期阶段,利用大尺度变异及均匀变异算子实现全局最优... 为了改善粒子群算法易早熟收敛、精度低等缺点,提出一种多尺度协同变异的粒子群优化算法,并证明了该算法以概率1收敛到全局最优解.算法采用多尺度高斯变异机制实现局部解逃逸.在算法初期阶段,利用大尺度变异及均匀变异算子实现全局最优解空间的快速定位;随着适应值的提升,变异尺度随之降低;最终在算法后期阶段,利用小尺度变异算子完成局部精确解空间的搜索.将算法应用6个典型复杂函数优化问题,并同其他带变异操作的PSO算法比较,结果表明,该算法在收敛速度及稳定性上有显著提高. 展开更多
关键词 粒子群算法 早熟收敛 多尺度 协同变异 适应度
下载PDF
一种带混沌变异的粒子群优化算法 被引量:26
12
作者 朱红求 阳春华 +1 位作者 桂卫华 李勇刚 《计算机科学》 CSCD 北大核心 2010年第3期215-217,共3页
为了克服粒子群算法在进化后期存在收敛速度慢、易陷入局部极小等问题,提出了一种混沌变异粒子群优化算法。该算法根据群体适应度变化率对种群中非优胜粒子进行变异操作,并对全局最优位置进行小范围混沌扰动,以增强算法跳出局部最优的... 为了克服粒子群算法在进化后期存在收敛速度慢、易陷入局部极小等问题,提出了一种混沌变异粒子群优化算法。该算法根据群体适应度变化率对种群中非优胜粒子进行变异操作,并对全局最优位置进行小范围混沌扰动,以增强算法跳出局部最优的能力。对几种复杂典型函数与标准粒子群算法进行了仿真测试,结果表明该算法明显改善了全局搜索能力和抗早熟收敛性能。 展开更多
关键词 粒子群 混沌变异 早熟收敛
下载PDF
自适应扩散混合变异机制微粒群算法 被引量:50
13
作者 吕艳萍 李绍滋 +2 位作者 陈水利 郭文忠 周昌乐 《软件学报》 EI CSCD 北大核心 2007年第11期2740-2751,共12页
为了避免微粒群算法(panicle swarm optimization,简称PSO)在全局优化中陷入局部极值,分析了标准PSO算法早熟收敛的原因,提出了自适应扩散混合变异机制微粒群算法(InfonnPSO).结合生物群体信息扩散的习性,设计了一个考虑微粒分布和迭代... 为了避免微粒群算法(panicle swarm optimization,简称PSO)在全局优化中陷入局部极值,分析了标准PSO算法早熟收敛的原因,提出了自适应扩散混合变异机制微粒群算法(InfonnPSO).结合生物群体信息扩散的习性,设计了一个考虑微粒分布和迭代次数的函数,自适应调整微粒的"社会认知"能力,提高种群的多样性;模拟了基因自组织和混沌进化规律引入克隆选择使群体最佳微粒gBest实现遗传微变、局部增值,具有变异确定性;利用Logistic序列指导gBest随机漂移,进一步增强逃离局部极值能力.基于种群的随机状态转移过程,证明了新算法具有全局收敛性.与其他几种PSO变种相比,复杂基准函数仿真优化结果表明,新算法收敛速度快,求解精度高,稳定性好,能够有效抑制早熟收敛. 展开更多
关键词 微粒群算法 早熟收敛 信息扩散 克隆选择 Logistic序列
下载PDF
自适应变异粒子群算法 被引量:30
14
作者 周利军 彭卫 +2 位作者 邹芳 刘宇荧 李莉 《计算机工程与应用》 CSCD 北大核心 2016年第7期50-55,149,共7页
为了解决粒子群种群多样性低、容易陷入局部最优的缺点,结合最优粒子和其他粒子在种群中的不同作用,给出了一种自适应变异粒子群算法。算法中最优粒子根据种群进化程度,自适应调整自身搜索邻域大小,增强种群的局部搜索能力;对非最优粒... 为了解决粒子群种群多样性低、容易陷入局部最优的缺点,结合最优粒子和其他粒子在种群中的不同作用,给出了一种自适应变异粒子群算法。算法中最优粒子根据种群进化程度,自适应调整自身搜索邻域大小,增强种群的局部搜索能力;对非最优粒子的位置进行小概率的随机初始化,当其速度为零时,速度自适应变化,以便增强种群多样性和全局搜索能力。仿真实验中,将算法应用于6个典型复杂函数优化问题,并与其他变异粒子群算法比较,结果表明,增强种群多样性的同时提高了局部搜索能力。 展开更多
关键词 粒子群算法 局部收敛 自适应 变异操作 群体智能
下载PDF
自适应变异的粒子群优化算法 被引量:51
15
作者 阳春华 谷丽姗 桂卫华 《计算机工程》 CAS CSCD 北大核心 2008年第16期188-190,共3页
针对粒子群算法的早熟收敛问题,提出一种新的基于群体适应度变化率自适应变异的粒子群优化算法。该算法根据群体适应度变化率自适应调整惯性权重的取值,根据当前种群的平均粒距对种群中部分粒子进行变异操作。自适应调整与变异操作能增... 针对粒子群算法的早熟收敛问题,提出一种新的基于群体适应度变化率自适应变异的粒子群优化算法。该算法根据群体适应度变化率自适应调整惯性权重的取值,根据当前种群的平均粒距对种群中部分粒子进行变异操作。自适应调整与变异操作能增强算法跳出局部最优的能力,增大寻找全局最优的几率。对几种典型函数的测试结果表明,新算法的全局搜索能力有了明显的提高,有效避免了早熟收敛问题。 展开更多
关键词 粒子群优化算法 自适应变异 早熟收敛
下载PDF
基于改进粒子群算法的天线方向图综合技术 被引量:33
16
作者 金荣洪 袁智皓 +2 位作者 耿军平 范瑜 李佳靖 《电波科学学报》 EI CSCD 北大核心 2006年第6期873-878,共6页
针对基本粒子群算法的早熟收敛、易收敛于局部极值的特点,提出一种改进的粒子群优化算法,采用对全局最佳微扰和惯性权重跳变阈值的设置改善了算法的优化速度和收敛精度。经过对一系列测试函数的计算,证明该方法具有良好的优化效果。最后... 针对基本粒子群算法的早熟收敛、易收敛于局部极值的特点,提出一种改进的粒子群优化算法,采用对全局最佳微扰和惯性权重跳变阈值的设置改善了算法的优化速度和收敛精度。经过对一系列测试函数的计算,证明该方法具有良好的优化效果。最后,给出了该方法应用于阵列天线方向图综合中的模型和仿真实例。 展开更多
关键词 粒子群优化算法 早熟收敛 阵列天线 方向图综合
下载PDF
基于改进粒子群算法的Web服务组合 被引量:72
17
作者 温涛 盛国军 +1 位作者 郭权 李迎秋 《计算机学报》 EI CSCD 北大核心 2013年第5期1031-1046,共16页
Web服务组合优化问题是典型的NP难题.将PSO算法用于连续性优化问题的相关研究较多,但将其应用于Web服务组合优化问题并不多见.文中提出一种改进的基于子粒子圆周轨道和零惯性权重的MDPSO算法,并将其应用到Web服务组合优化问题中,该算法... Web服务组合优化问题是典型的NP难题.将PSO算法用于连续性优化问题的相关研究较多,但将其应用于Web服务组合优化问题并不多见.文中提出一种改进的基于子粒子圆周轨道和零惯性权重的MDPSO算法,并将其应用到Web服务组合优化问题中,该算法使用基于三角函数的非线性动态学习因子及种群早熟收敛预测与处理方法控制粒子群的行为,在粒子的局部开拓能力和全局收敛能力之间达到良好的动态平衡.最后文中给出了MDPSO算法的实验及评价方法.这些概念和方法为PSO算法在Web服务组合问题上的应用研究提供了一种全新的思路.通过与传统的PSO算法做比较,验证了该算法在Web服务组合问题上效率更优.通过对实验数据的分析和解释得到了若干有益的结论,为进一步的研究工作奠定了基础. 展开更多
关键词 WEB服务组合 粒子群优化算法 子粒子圆周轨道 非线性动态学习因子 防早熟收敛
下载PDF
改进PSO算法及在PID参数整定中应用研究 被引量:42
18
作者 任子武 伞冶 陈俊风 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第10期2870-2873,共4页
针对粒子群优化算法(PSO)存在早熟和局部收敛的问题,提出了一种带变异算子的改进粒子群优化算法(IPSOM),该算法在搜索中以一定变异概率对选中的粒子进行变异,同时对飞离搜索区域的粒子用新产生的粒子取代,以克服粒子群优化算法易陷入局... 针对粒子群优化算法(PSO)存在早熟和局部收敛的问题,提出了一种带变异算子的改进粒子群优化算法(IPSOM),该算法在搜索中以一定变异概率对选中的粒子进行变异,同时对飞离搜索区域的粒子用新产生的粒子取代,以克服粒子群优化算法易陷入局部最优解的缺陷。用一典型的Rastigrin复杂函数对新算法进行测试,结果表明改进的算法较之粒子群优化算法(PSO)和常规遗传算法(SGA)不但提高了全局寻优能力,而且有效避免了早熟收敛问题。在此基础上将这种改进算法应用于高阶带时滞对象的PID控制器设计中进行仿真研究,结果表明了所提出算法的有效性和所设计控制器的优越性。 展开更多
关键词 粒子群算法 早熟 变异 PID控制器
下载PDF
进化Elman神经网络在实时数据预测中的应用 被引量:23
19
作者 王晓霞 马良玉 +1 位作者 王兵树 王涛 《电力自动化设备》 EI CSCD 北大核心 2011年第12期77-81,共5页
为了提高电站实时数据的准确性,提出了一种利用改进粒子群算法进化Elman神经网络的动态系统实时数据预测方法。改进粒子群算法中,根据群体早熟收敛程度和当前最优解的大小对部分不活跃粒子进行变异,增强了算法跳出局部最优解的能力。利... 为了提高电站实时数据的准确性,提出了一种利用改进粒子群算法进化Elman神经网络的动态系统实时数据预测方法。改进粒子群算法中,根据群体早熟收敛程度和当前最优解的大小对部分不活跃粒子进行变异,增强了算法跳出局部最优解的能力。利用改进的粒子群算法训练Elman神经网络权值和自反馈增益因子,有效地解决了梯度下降法训练网络权值收敛速度慢、易陷入局部极值的缺点。以某300 MW机组的主蒸汽流量为具体对象,给出了该方法的算例,结果表明该方法能正确获取系统动态特性,具有较强的降噪能力,对异常数据具有鲁棒性。与标准Elman神经网络进行比较,该方法具有较好的预测精度和泛化能力。 展开更多
关键词 ELMAN 神经网络 实时数据 预测 粒子群优化算法 早熟收敛
下载PDF
一种混沌差分进化和粒子群优化混合算法 被引量:22
20
作者 阳春华 钱晓山 桂卫华 《计算机应用研究》 CSCD 北大核心 2011年第2期439-441,共3页
为了改善差分进化粒子群算法的局部搜索能力和收敛速度,提出了一种混沌差分进化的粒子群优化算法。该算法利用信息交换机制将两组种群分别用差分进化算法和粒子群算法进行协同进化,并且将混沌变异操作引入其中,加强算法的局部搜索能力... 为了改善差分进化粒子群算法的局部搜索能力和收敛速度,提出了一种混沌差分进化的粒子群优化算法。该算法利用信息交换机制将两组种群分别用差分进化算法和粒子群算法进行协同进化,并且将混沌变异操作引入其中,加强算法的局部搜索能力。通过对三个标准函数进行测试,仿真结果表明该算法与DEPSO算法相比,全局搜索能力、抗早熟收敛性能及收敛速度大大提高。 展开更多
关键词 差分进化 粒子群 混沌变异 局部搜索能力 收敛速度
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部