期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of Volume Fraction of Particle on Wear Resistance of Al_2O_3/Steel Composites at Elevated Temperature
1
作者 BAOChonggao WANGEn-ze GAOYi-min XINGJian-dong 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第2期60-63,共4页
Based on previous work, abrasive wear resistance of Al 2O 3/steel composites with different Al 2O 3 particle volume fraction (VOF) at 900 ℃ was investigated. The experimental results showed that a suitable particle V... Based on previous work, abrasive wear resistance of Al 2O 3/steel composites with different Al 2O 3 particle volume fraction (VOF) at 900 ℃ was investigated. The experimental results showed that a suitable particle VOF is important to protect the metal matrix from wear at elevated temperature. Both too high and too low particle VOF lead to a poor abrasive wear because a bulk matrix is easily worn off by grits when it exceeds the suitable VOF and also because when VOF is low, the Al 2O 3 particles are easily dug out by grits during wearing as well. When the particle VOF is 39%, the wear resistance of tested composites is excellent. 展开更多
关键词 particle volume fraction composite material elevated temperature abrasive wear
下载PDF
Analysis of behaviour of computational model to evaluate performance of heat pipe containing nanofluids 被引量:2
2
作者 Rodrigo Vidonscky PINTO Flávio Augusto Sanzovo FIORELLI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1306-1326,共21页
Application of nanofluids in heat pipes usually presents satisfactory experimental results regarding a thermal resistance reduction of the heat pipe.However,the existing computational studies connecting heat pipes and... Application of nanofluids in heat pipes usually presents satisfactory experimental results regarding a thermal resistance reduction of the heat pipe.However,the existing computational studies connecting heat pipes and nanofluids lack a deeper discussion regarding the validity of the models currently used for representing the behaviour of a nanofluid in a heat pipe,particularly for unusual base fluids and nanoparticles such as carbon nanotubes or ethylene glycol.Thus,this comparative study presents the results of a set of computational simulations using pre-established equations for modelling a nanofluid in a heat pipe with experimental data from the literature.The results show agreement with the expected behaviour qualitatively and the presented maximum variations between 1.5% and 23.9% in comparison to the experimentally measured average temperatures.Also,the experimentally obtained temperature distribution of a heat pipe could not be reached numerically only with the use of adequate thermal properties,indicating that the boiling phenomenon is more complex than the current model used for computational simulations.Moreover,the existence of an optimal particle volume fraction for using nanofluids in this application could be observed by combining different properties models. 展开更多
关键词 heat pipe NANOFLUID computational analysis particle volume fraction
下载PDF
COMPUTATION OF FLEXURAL PROPERTIES OF HA/PLLA COMPOSITE USING A CELL MODEL APPROACH
3
作者 Fan Jianping Tang Chak-Yin Tsui C.P. 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第1期18-25,共8页
A three-dimensional finite element analysis was conducted to evaluate the feasibility of predicting the flexural properties of hydroxyapatite-reinforced poly-L-lactide acid (HA/PLLA) biocomposite using three differe... A three-dimensional finite element analysis was conducted to evaluate the feasibility of predicting the flexural properties of hydroxyapatite-reinforced poly-L-lactide acid (HA/PLLA) biocomposite using three different schemes. The scheme 1, originated from a beam analysis, was used to determine the flexural modulus analytically while the scheme 2 and 3 were designed to have different loading and boundary conditions using a finite element cell modeling approach. An empirical approach using Chow's formula and experimental data were used for comparison with the predicted results. In order to reduce the computational time and save the storage space involved in determining the effect of varying particle volume fractions on the flexural properties of HA/PLLA, a superelement technique was applied. The results using the scheme 3 and the Chow's formula were found to be in reasonable agreement with experimental results over the range of particle volume fraction. In addition to the Chow's formula, local stress distribution and the failure processes in HA/PLLA were simulated using the finite element technique. 展开更多
关键词 COMPOSITE hydroxyapatite (HA) poly-L-lactide acid (PLLA) finite element method(FEM) cell model flexural properties particle volume fraction (PVF)
下载PDF
Experimental study of the solid circulation rate in a pressurized circulating fluidized bed 被引量:1
4
作者 Jinding Hu Daoyin Liu +2 位作者 Heng Li Cai Liang Xiaoping Chen 《Particuology》 SCIE EI CAS CSCD 2021年第3期207-214,共8页
The solid circulation rate is essential for design of pressurized circulating fluidized beds(PCFBs).With increasing pressure from atmospheric pressure to a few bars,the gas density linearly increases with the pressure... The solid circulation rate is essential for design of pressurized circulating fluidized beds(PCFBs).With increasing pressure from atmospheric pressure to a few bars,the gas density linearly increases with the pressure,which affects the gas-solid flow characteristics.In this work,experiments were performed at room temperature in a cold PCFB apparatus with a riser of 3.3 m in height and 0.05 m in diameter.The solid circulation rate was studied from 20 to 80 kg/(m^(2)·s)under various conditions with increasing pressure from 0.1 to 0.6 MPa and fluidizing gas velocity from around 1.5 to 8.0 m/s for different Geldart B group particles.Most of the conditions were in the flow regimes of core-annulus flow(CAF)only and CAF with a turbulent fluidized bed at the bottom.The trend of the apparent slip factor with the dimensionless slip velocity was similar at different pressures and for different average particle sizes,and it converged to an exponential function.An empirical equation was obtained by fitting the solid circulation rate with the operating parameters(particle transport velocity,particle volume fraction,Archimedes number,and Froude number),which is helpful for design and operation of PCFBs. 展开更多
关键词 Pressurized Circulating fluidized bed Solid circulation rate particle volume fraction Gas-solid slip velocity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部