期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of Particle Shape on Catalyst Deactivation during 2-Butene and Isobutane Alkylation of Liquid Phase in Fixed-Bed Reactor Using Particle-Resolved CFD Simulation 被引量:2
1
作者 Zhang Sizhen Zhu Zhenxing +1 位作者 Xin Feng Chu Menghan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第4期139-150,共12页
How catalyst shape affects its deactivation is a crucial issue for quickly decaying catalysts such as zeolite in 2-butene and isobutane alkylation.In this work,steady simulations are used to determine the temperature ... How catalyst shape affects its deactivation is a crucial issue for quickly decaying catalysts such as zeolite in 2-butene and isobutane alkylation.In this work,steady simulations are used to determine the temperature and species distribution in fixed beds filled with particles of four shapes.Subsequently,unsteady simulations are used to study the deactivation behavior of the catalysts based on the steady simulation results.We describe the deactivation rate and type of catalyst deactivation by defining a local internal diffusivity,which is affected by catalytic activity.The results reveal that the internal diffusion distance of the catalyst determines the deactivation rate,whereas the local internal diffusivity determines its deactivation type. 展开更多
关键词 ALKYLATION catalyst deactivation particle shape fixed bed particle-resolved CFD
下载PDF
Improvement of the Viscous Penalty Method for Particle-Resolved Simulations
2
作者 Mohamed-Amine Chadil Stéphane Vincent Jean-Luc Estivalèzes 《Open Journal of Fluid Dynamics》 2019年第2期168-192,共25页
A numerical study of the parameters controlling the viscous penalty method is investigated to better set up Particle-Resolved Direct Numerical Simulations (PR-DNS) of particulate flows. Based on this analysis, improve... A numerical study of the parameters controlling the viscous penalty method is investigated to better set up Particle-Resolved Direct Numerical Simulations (PR-DNS) of particulate flows. Based on this analysis, improvements of the methods are proposed in order to reach an almost second order convergence in space. The viscous penalty method is validated in Stokes regime by simulating a uniform flow past a fixed isolated cylinder. Moreover, it is also utilized in moderate Reynolds number regime for a uniform flow past a square configuration of cylinder and compared in terms of friction factor to the well-known Ergun correlation. 展开更多
关键词 particle-resolved DNS VISCOUS PENALTY Method Finite VOLUMES Staggered Grids One-Fluid Model
下载PDF
Parallelization strategies for resolved simulations of fluid-structure-particle interactions
3
作者 Jianhua QIN Fei LIAO +1 位作者 Guodan DONG Xiaolei YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期857-872,共16页
Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boun... Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boundary(IB)method developed in our previous work.For the moving structure modeled using the sharp interface IB method,a recursive box method is developed for efficiently classifying the background grid nodes.For the particles modeled using the diffuse interface IB method,a‘master-slave’approach is adopted.For the particle-particle interaction(PPI)and particle-structure interaction(PSI),a fast algorithm for classifying the active and inactive Lagrangian points,which discretize the particle surface,is developed for the‘dry’contact approach.The results show that the proposed recursive box method can reduce the classifying time from 52seconds to 0.3 seconds.Acceptable parallel efficiency is obtained for cases with different particle concentrations.Furthermore,the lubrication model is utilized when a particle approaches a wall,enabling an accurate simulation of the rebounding phenomena in the benchmark particle-wall collision problem.At last,the capability of the proposed computational framework is demonstrated by simulating particle-laden turbulent channel flows with rough walls. 展开更多
关键词 particle-resolved direct numerical simulation particle-laden flow complex geometry resolved fluid-structure-particle interaction(RFSPI) immersed boundary(IB)method
下载PDF
A discrete contact model for complex arbitrary-shaped convex geometries
4
作者 Jan E.Marquardt Ulrich J.Römer +1 位作者 Hermann Nirschl Mathias J.Krause 《Particuology》 SCIE EI CAS CSCD 2023年第9期180-191,共12页
The shape of particles has a significant influence on the behavior of suspensions,as the particle-fluid,particle-particle,and particle-wall interactions depend on it.However,the simultaneous consideration of complex p... The shape of particles has a significant influence on the behavior of suspensions,as the particle-fluid,particle-particle,and particle-wall interactions depend on it.However,the simultaneous consideration of complex particle shapes and four-way coupling remains a major challenge.This is mainly due to a lack of suitable contact models.Contact models for complex shapes have been proposed in literature,and most limit the accuracy of the particle-fluid interaction.For this reason,this paper presents a novel contact model for complex convex particle shapes for use with partially saturated methods,in which we propose to obtain necessary contact properties,such as the indentation depth,by a discretization of the contact area.The goal of the proposed model is to enable comprehensive and accurate studies of particulate flows,especially with high volume fractions,that lead to new insights and contribute to the improvement of existing industrial processes.To ensure correctness and sustainability,we validate the model extensively by studying cases with and without fluid.In the latter case,we use the homogenized lattice Boltzmann method.The provided investigations show a great agreement of the proposed discrete contact model with analytical solutions and the literature. 展开更多
关键词 Partially saturated cells method Homogenized lattice Boltzmann method Arbitrarily shaped particle Discrete contact model particle-resolved simulation OpenLB
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部