期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
A particle-resolved heat-particle-fluid coupling model by DEM-IMB-LBM
1
作者 Ming Xia Jinlong Fu +2 位作者 Y.T.Feng Fengqiang Gong Jin Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2267-2281,共15页
Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate parti... Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate particle-fluid interaction problems involving heat transfer at the grain level.In this extended technique,an immersed moving boundary(IMB)scheme is used to couple the discrete element method(DEM)and lattice Boltzmann method(LBM),while a recently proposed Dirichlet-type thermal boundary condition is also adapted to account for heat transfer between fluid phase and solid particles.The resulting DEM-IBM-LBM model is robust to simulate moving curved boundaries with constant temperature in thermal flows.To facilitate the understanding and implementation of this coupled model for non-isothermal problems,a complete list is given for the conversion of relevant physical variables to lattice units.Then,benchmark tests,including a single-particle sedimentation and a two-particle drafting-kissing-tumbling(DKT)simulation with heat transfer,are carried out to validate the accuracy of our coupled technique.To further investigate the role of heat transfer in particle-laden flows,two multiple-particle problems with heat transfer are performed.Numerical examples demonstrate that the proposed coupling model is a promising high-resolution approach for simulating the heat-particle-fluid coupling at the grain level. 展开更多
关键词 particle-fluid interaction Heat transfer Discrete element method(DEM) Lattice Boltzmann method(LBM) Dirichlet-type thermal boundary Direct numerical simulation
下载PDF
Lattice Boltzmann method for simulating particle-fluid interactions 被引量:4
2
作者 Liang-Shih Fan 《Particuology》 SCIE EI CAS CSCD 2010年第6期539-543,共5页
The lattice Boltzmann method (LBM) has gained increasing popularity in the last two decades as an alternative numerical approach for solving fluid flow problems. One of the most active research areas in the LBM is i... The lattice Boltzmann method (LBM) has gained increasing popularity in the last two decades as an alternative numerical approach for solving fluid flow problems. One of the most active research areas in the LBM is its application in particle-fluid systems, where the advantage of the LBM in efficiency and parallel scalability has made it superior to many other direct numerical simulation (DNS) techniques. This article intends to provide a brief review of the application of the LBM in particle-fluid systems. The numerical techniques in the LBM pertaining to simulations of particles are discussed, with emphasis on the advanced treatment for boundary conditions on the particle-fluid interface. Other numerical issues, such as the effect of the internal fluid, are also briefly described. Additionally, recent efforts in using the LBM to obtain closures for particle-fluid drag force are also reviewed. 展开更多
关键词 particle-fluid flow Drag force Lattice Boltzmann method (LBM) Numerical simulation Adaptive mesh refinement (AMR) Immersed boundary method
原文传递
Numerical Investigation on Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurry in a Rectangular Minichannel
3
作者 WANG Zhibin LI Zilong +2 位作者 JIA Lisi DING Bin CHEN Ying 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第2期564-577,共14页
Microencapsulation phase change material slurry(MEPCMS) becomes a potential working fluid for cooling high energy density miniaturized components,thanks to the latent heat absorption of particles in the heat transfer ... Microencapsulation phase change material slurry(MEPCMS) becomes a potential working fluid for cooling high energy density miniaturized components,thanks to the latent heat absorption of particles in the heat transfer process.In this work,the Discrete Phase Model(DPM) based on the Euler-Lagrangian method is used to numerically investigate the convective heat transfer characteristics of MEPCMS flowing through a rectangular minichannel with constant heat flux.The results show that particles of MEPCMS are mainly subjected to drag force during the flow.Even so,they can migrate from the high-temperature region to the low-temperature region driven by the thermophoretic force,affecting the particle distribution and phase change process.Moreover,the Nux of the MEPCMS fluctuates due to particle phase change with varying specific heat capacities.Specifically,the value increases first,then decreases,and eventually increases again until it approaches the fully developed value of the pure base fluid as the particles gradually melt.Furthermore,the heat transfer performance of the MEPCMS is influenced by the combination of fluid inlet temperature fluid inlet velocity(v),and mass concentration(c_(m)) of MEPCM particles.The result shows that the maximum reduction of the maximum bottom wall temperature difference(ΔT_(w)) is 23.98% at T_(in)=293.15 K,v=0.15 m·s^(-1),c_(m)=10%. 展开更多
关键词 Microencapsulated Phase Change Material Slurry(MPCMS) Discrete Phase Model(DPM) particle-fluid interaction force minichannel heat sink THERMOPHORESIS
原文传递
Experiment and simulation of slurry flow in irregular channels to understand proppant transport in complex fractures
4
作者 Hai Qu Jun Hong +4 位作者 Ying Liu Zhijun Zeng Xu Liu Xiangjun Chen Ruichang Guo 《Particuology》 SCIE EI CSCD 2023年第12期194-211,共18页
Slurry flow and proppant placement in irregular fractures are crucial to evaluate hydraulic fracturing stimulation but need to be better understood.This study aims to investigate how irregular fracture affects proppan... Slurry flow and proppant placement in irregular fractures are crucial to evaluate hydraulic fracturing stimulation but need to be better understood.This study aims to investigate how irregular fracture affects proppant transport and distribution using laboratory experiments and micro-scale numerical models.The unresolved method of the computational fluid dynamics(CFD)and the discrete element method(DEM)considers Saffman lift force,Magnus force,and virtual mass force to accurately capture the frequent interaction between proppant and slickwater.Experimental results validated the reliability of the optimized CFD-DEM model and calibrated primary parameters.The effects of crack height and width,bending angle,and distance between the crack and inlet on particle distribution were studied.The results indicated that the improved numerical method could rationally simulate proppant transport in fractures at a scale factor.The small crack height causes downward and upward flows,which wash proppant to the fracture rear and form isolated proppant dunes.A wider region in the fracture is beneficial to build up a large dune,and the high dune can hinder particle transport into the fracture rear.When the crack is close to the inlet,the primary fracture without proppants will close to hinder gas production.The smaller the bending angle,the smaller the proppant dune.A regression model can precisely predict the dune coverage ratio.The results fundamentally understand how complex fractures and natural cracks affect slurry flow and proppant distribution. 展开更多
关键词 Slurry flow Sand transport particle-fluid interaction Irregular channel CFD-DEM
原文传递
Lattice Solid/Boltzmann Microscopic Model to Simulate Solid/Fluid Systems——A Tool to Study Creation of Fluid Flow Networks for Viable Deep Geothermal Energy 被引量:5
5
作者 Peter Mora Yucang Wang Fernando Alonso-Marroquin 《Journal of Earth Science》 SCIE CAS CSCD 2015年第1期11-19,共9页
SUMMARY: Realizing the potential of geothermal energy as a cheap, green, sustainable resource to provide for the planet's future energy demands that a key geophysical problem be solved first: how to develop and mai... SUMMARY: Realizing the potential of geothermal energy as a cheap, green, sustainable resource to provide for the planet's future energy demands that a key geophysical problem be solved first: how to develop and maintain a network of multiple fluid flow pathways for the time required to deplete the heat within a given region. We present the key components for micro-scale particle-based numerical modeling of hydraulic fracture, and fluid and heat flow in geothermal reservoirs. They are based on the latest developments of ESyS-Particle--the coupling of the lattice sofid model (LSM) to simulate the nonlinear dynamics of complex solids with the lattice Boltzmann method (LBM) applied to the nonlinear dynamics of coupled fluid and heat flow in the complex solid-fluid system. The coupled LSM/LBM can be used to simulate development of fracture systems in discontinuous media, elastic stress release, fluid injection and the consequent slip at joint surfaces, and hydraulic fractur- ing; heat exchange between hot rocks and water within flow pathways created through hydraulic fracturing; and fluid flow through complex, narrow, compact and gouge- or powder-f'flled fracture and joint systems. We demonstrate the coupled LSM/LBM to simulate the fundamental processes listed above, which are all components for the generation and sustainability of the hot-fractured rock geothermal energy fracture systems required to exploit this new green-energy resource. 展开更多
关键词 lattice Boltzmann particle-fluid interaction geothermal energy coupled lattice solid/lattice Boitzmann model discrete element method lattice solid model.
原文传递
CFD-DEM simulation of the hole cleaning process in a deviated well drilling: The effects of particle shape 被引量:8
6
作者 Siamak Akhshik Mehdi Behzad Majid Rajabi 《Particuology》 SCIE EI CAS CSCD 2016年第2期72-82,共11页
We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). ... We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). This numerical method allows us to incorporate the fluid-particle interactions (drag force, contact force, Saffman lift force, Magnus lift force, buoyancy force) using momentum exchange and the non-Newtonian behavior of the fluid. The interactions of particle-particle, particle-wall, and particle-drill pipe are taken into account with the Hertz-Mindlin model. We compare the transport of spheres with non-spherical particles (non-smooth sphere, disc, and cubic) constructed via the multi- sphere method for a range of fluid inlet velocities and drill pipe inclination angles. The simulations are carried out for laboratory-scale drilling configurations. Our results demonstrate good agreement with published experimental data. We evaluate the fluid-particle flow patterns, the particle velocities, and the particle concentration profiles. The results reveal that particle sphericity plays a major role in the fluid-solid interaction. The traditional assumption of an ideal spherical particle may cause inaccurate results. 展开更多
关键词 CFD-DEM method Deviated well drilling Particles transport Two-way coupling scheme particle-fluid Interaction
原文传递
Numerical simulation of polygonal particles moving in incompressible viscous fluids 被引量:2
7
作者 Xiaowu Fu Zhaohui Yao Xiwen Zhang 《Particuology》 SCIE EI CAS CSCD 2017年第2期140-151,共12页
A two-dimensional coupled lattice Boltzmann immersed boundary discrete element method is introduced for the simulation of polygonal particles moving in incompressible viscous fluids. A collision model of polygonal par... A two-dimensional coupled lattice Boltzmann immersed boundary discrete element method is introduced for the simulation of polygonal particles moving in incompressible viscous fluids. A collision model of polygonal particles is used in the discrete element method. Instead of a collision model of circular particles, the collision model used in our method can deal with particles of more complex shape and efficiently simulate the effects of shape on particle–particle and particle–wall interactions. For two particles falling under gravity, because of the edges and corners, different collision patterns for circular and polygonal particles are found in our simulations. The complex vortexes generated near the corners of polygonal particles affect the flow field and lead to a difference in particle motions between circular and polygonal particles. For multiple particles falling under gravity, the polygonal particles easily become stuck owing to their corners and edges, while circular particles slip along contact areas. The present method provides an efficient approach for understanding the effects of particle shape on the dynamics of non-circular particles in fluids. 展开更多
关键词 Polygonal particle particle-fluid interaction Lattice Boltzmann method Immersed boundary method Discrete element method
原文传递
REMARKS ON SINO-GERMAN WORKSHOP ON CHEMICAL AND PHYSICAL INTERACTIONS BETWEEN PARTICLES AND FLUIDS
8
作者 JinghaiLi JoachimWerther 《China Particuology》 SCIE EI CAS CSCD 2005年第1期143-144,共2页
This paper presents some remarks on the perspectives of process engineering in the 21st century extracted from the discussion at the workshop. It is considered that the field will be upgraded by introducing knowledge ... This paper presents some remarks on the perspectives of process engineering in the 21st century extracted from the discussion at the workshop. It is considered that the field will be upgraded by introducing knowledge in other fields, extended to even more applications by generalizing the relevant methods, and unified to, at least covered by, the complexity science. Transdisciplinarity is necessary to cope with this challenge. 展开更多
关键词 particle-fluid interaction complexity process engineering multi-scale MULTI-PHASE MULTI-LEVEL
原文传递
MODELING CHARGE RELAXATION ON SURFACES OF PARTICLES SUSPENDED IN LIQUID
9
作者 GuoqingGu KinWahYu 《China Particuology》 SCIE EI CAS CSCD 2005年第1期47-51,共5页
A general theory on charges relaxation process in particle-fluid systems is introduced in this article. The method to derive analytical solutions for the charge relaxation equation is illustrated, and some respects fo... A general theory on charges relaxation process in particle-fluid systems is introduced in this article. The method to derive analytical solutions for the charge relaxation equation is illustrated, and some respects for this theory are discussed in detail. 展开更多
关键词 particle-fluid systems charge relaxation process SUSPENSION complex fluid
原文传递
Computational fluid dynamic-discrete element method coupling analysis of particle transport in branched networks
10
作者 Xiaoyu Wang Jun Yao +3 位作者 Liang Gong Yang Li Yongfei Yang Hongliang Zhao 《Particuology》 SCIE EI CAS CSCD 2021年第2期140-150,共11页
An understanding of the particle transport characteristics in a branched network helps to predict the particle distribution and prevent undesired plugging in various engineering systems.Quantitative analysis of partic... An understanding of the particle transport characteristics in a branched network helps to predict the particle distribution and prevent undesired plugging in various engineering systems.Quantitative analysis of particle flow characteristics is challenging in that experiments are expensive and particle flow is difficult to detect without disturbing the flow.To overcome this difficulty,man-made fractal tree-like branched networks were built,and a coupled computational fluid dynamic and discrete element method model was applied.A series of numerical simulations was carried out to analyze the influence of fractal structure parameters of networks on the particle flow characteristics.The joint influence of inertial,shunt capacity and superposition from upstream branches on particle flow was investigated.The injection position at the inlet determined the particle velocity and its future flow path.The particle density ratio,particle size and bifurcation angle had a greater influence on the shunting of K2 branches than that in the K1 level and N_(k22)/N_(k21) reached a maximum at 60°.Compared with a network with an even number of branches,there was a preferential branch when the branch number was odd.The preferential branch effect or asymmetry degree of the level(K2)branches had a more significant impact on particle shunting than that from the upstream branches(K1). 展开更多
关键词 particle-fluid flow CFD-DEM coupling Branched network
原文传递
A note on a boundary condition for spouted beds
11
作者 Norman Epstein 《Particuology》 SCIE EI CAS CSCD 2010年第6期536-538,共3页
The boundary condition, zero solids pressure at the top of a particle bed of maximum spoutable height, Hm, is shown to eliminate any resort to empiricism in the derivation of the fluid velocity in the annulus of a spo... The boundary condition, zero solids pressure at the top of a particle bed of maximum spoutable height, Hm, is shown to eliminate any resort to empiricism in the derivation of the fluid velocity in the annulus of a spouted bed for which both viscous and inertial effects are taken into account. The same boundary condition fails when applied to a spouted bed for which the bed height H 〈 Hm, especially when H 〈 0.8Hm. 展开更多
关键词 Spouted beds Annulus flow Boundary condition particle-fluid hydrodynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部