Particle-In-Cell(PIC)simulations were performed in this work to study the dynamics of the EUVinduced hydrogen plasma.The Monte-Carlo Collision(MCC)model was employed to deal with the collisions between charged particl...Particle-In-Cell(PIC)simulations were performed in this work to study the dynamics of the EUVinduced hydrogen plasma.The Monte-Carlo Collision(MCC)model was employed to deal with the collisions between charged particles and background gas molecules.The dynamic evolution of the plasma sheath,as well as the flux and energy distribution of ions impacting on the mirror surface,was discussed.It was found that the emission of secondary electrons under the EUV irradiation on the ruthenium mirror coating creates a positively charged wall and then prevents the ions from impacting on the mirror and therefore changes the flux and energy distribution of ions reaching the mirror.Furthermore,gas pressure has a notable effect on the plasma sheath and the characteristics of the ions impinging on the mirrors.With greater gas pressure,the sheath potential decreases more rapidly.The flux of ions received by the mirror grows approximately linearly and at the same time the energy corresponding to the peak flux decreases slightly.However,the EUV source intensity barely changes the sheath potential,and its influence on the ion impact is mainly limited to the approximate linear increase in ion flux.展开更多
The direct implicit particle-in-cell is a powerful kinetic method for researching plasma characteristics.However,it is time-consuming to obtain the future electromagnetic field in such a method since the field equatio...The direct implicit particle-in-cell is a powerful kinetic method for researching plasma characteristics.However,it is time-consuming to obtain the future electromagnetic field in such a method since the field equations contain time-dependent matrix coefficients.In this work,we propose to explicitly push particles and obtain the future electromagnetic field based on the information about the particles in the future.The new method retains the form of implicit particle pusher,but the future field is obtained by solving the traditional explicit equation.Several numerical experiments,including the motion of charged particle in electromagnetic field,plasma sheath,and free diffusion of plasma into vacuum,are implemented to evaluate the performance of the method.The results demonstrate that the proposed method can suppress finite-grid-instability resulting from the coarse spatial resolution in electron Debye length through the strong damping of high-frequency plasma oscillation,while accurately describe low-frequency plasma phenomena,with the price of losing the numerical stability at large time-step.We believe that this work is helpful for people to research the bounded plasma by using particle-in-cell simulations.展开更多
Propellant gas flow has an important impact on the ionization and acceleration process of Hall effect thrusters (HETs). In this paper, a particle-in-cell numerical method is used to study the effect of the anode tem...Propellant gas flow has an important impact on the ionization and acceleration process of Hall effect thrusters (HETs). In this paper, a particle-in-cell numerical method is used to study the effect of the anode temperature, i.e., the flow speed of the propellant gas, on the discharge characteristics of a HET. The simulation results show that, no matter the magnitude of the discharge voltage, the calculated variation trends of performance parameters with the anode temperature are in good agreement with the experimental ones presented in the literature. Further mechanism analysis indicates that the magnitude of the electron temperature is responsible for the two opposing variation laws found under different discharge voltages. When the discharge voltage is low, the electron temperature is low, and so is the intensity of the propellant ionization; the variation of the thruster performance with the anode temperature is thereby determined by the variation of the neutral density that affects the propellant utilization efficiency. When the discharge voltage is high, the electron temperature is large enough to guarantee a high degree of the propellant utilization no matter the magnitude of the anode temperature. The change of the thruster performance with the anode temperature is thus dominated by the change of the electron temperature and consequently the electron-neutral collisions as well as the electron cross-field mobility that affect the current utilization efficiency.展开更多
Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulatio...Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.展开更多
Previous electrostatic particle-in-cell (PIC) simulations have pointed out that elec- tron phase-space holes (electron holes) can be formed during the nonlinear evolution of the electron two-stream instability. Th...Previous electrostatic particle-in-cell (PIC) simulations have pointed out that elec- tron phase-space holes (electron holes) can be formed during the nonlinear evolution of the electron two-stream instability. The parallel cuts of the parallel and perpendicular electric field have bipolar and unipolar structures in these electron holes, respectively. In this study, two-dimensional (2D) electromagnetic PIC simulations are performed in the x - y plane to investigate the evolution of the electron two-stream instability, with the emphasis on the magnetic structures associated with these electron holes in different plasma conditions. In the simulations, the background magnetic field (Bo = Boer) is along the x direction. In weakly magnetized plasma (Ωe 〈ωpe, where Ωe and ωpe are the electron gyrofrequency and electron plasma frequency, respectively), several 2D electron holes are formed. In these 2D electron holes, the parallel cut of the fluctuating magnetic field δBx and δBz has unipolar structures, while the fluctuating magnetic field δBy has bipolar structures. In strongly magnetized plasma (Ωe 〉 ωpe), several quasi-lD electron holes are formed. The electrostatic whistler waves with streaked structures of Ey are excited. The fluctuating mag- netic field δBx and δBz also have streaked structures. The fluctuating magnetic field δBx and δBy are produced by the current in the z direction due to the electric field drift of the trapped elec- trons, while the fluctuating magnetic field δBz can be explained by the Lorentz transformation of a moving quasielectrostatic structure. The influences of the initial temperature anisotropy on the magnetic structures of the electron holes are also analyzed. The electromagnetic whistler waves are found to be excited in weakly magnetized plasma. However, they do not have any significant effects on the electrostatic structures of the electron holes.展开更多
Reflections of a Korteweg-de Vries (KdV) solitary wave and an envelope solitary wave are studied by using the particle-in-cell simulation method. Defining the phase shift of the reflected solitary wave, we notice th...Reflections of a Korteweg-de Vries (KdV) solitary wave and an envelope solitary wave are studied by using the particle-in-cell simulation method. Defining the phase shift of the reflected solitary wave, we notice that there is a phase shift of the reflected KdV solitary wave, while there is no phase shift for an envelope solitary wave. It is also noted that the reflection of a KdV solitary wave at a solid boundary is equivalent to the head-on collision between two identical amplitude solitary waves.展开更多
We study some nonlinear waves in a viscous plasma which is confined in a finite cylinder.By averaging the physical quantities on the radial direction in some cases,we reduce this system to a simple one-dimensional mod...We study some nonlinear waves in a viscous plasma which is confined in a finite cylinder.By averaging the physical quantities on the radial direction in some cases,we reduce this system to a simple one-dimensional model.It seems that the effects of the bounded geometry(the radius of the cylinder in this case)can be included in the damping coefficient.We notice that the amplitudes of both Korteweg–de Vries(KdV)solitary waves and dark envelope solitary waves decrease exponentially as time increases from the particle-in-cell(PIC)simulation.The dependence of damping coefficient on the cylinder radius and the viscosity coefficient is also obtained numerically and analytically.Both are in good agreement.By using a definition,we give a condition whether a solitary wave exists in a bounded plasma.Moreover,some of potential applications in laboratory experiments are suggested.展开更多
By performing one-dimensional particle-in-cell simulations, the nonlinear effects of electronacoustic(EA) waves are investigated in a multispecies plasma, whose constituents are hot electrons, cold electrons, and beam...By performing one-dimensional particle-in-cell simulations, the nonlinear effects of electronacoustic(EA) waves are investigated in a multispecies plasma, whose constituents are hot electrons, cold electrons, and beam electrons with immobile neutralized positive ions. Numerical analyses have identified that EA waves with a sufficiently large amplitude tend to trap cold electrons. Because EA waves are dispersive, where the wave modes with different wavenumbers have different phase velocities, the trapping may lead to the mixing of cold electrons. The cold electrons finally get thermalized or heated. The investigation also shows that the excited EA waves give rise to a broad range of wave frequencies, which may be helpful for understanding the broadband-electrostatic-noise spectrum in the Earth’s auroral region.展开更多
The property of scrape-off layer(SOL) currents induced by a biased electrode is investigated by fully kinetic collisionless two-dimensional particle-in-cell(PIC) simulations. A reduced Vlasov–Darwin model is employed...The property of scrape-off layer(SOL) currents induced by a biased electrode is investigated by fully kinetic collisionless two-dimensional particle-in-cell(PIC) simulations. A reduced Vlasov–Darwin model is employed, which is capable of describing the low-frequency kinetic behavior without electromagnetic vacuum modes(w^2=w_(pe)~2+ c^2k^2). A linear decay distribution of electron currents parallel to the background magnetic field is exhibited. Simulation analyses indicate that the cross field ion current is a key factor in sheath formation and global current balance. The influences of electrode area, biasing voltage and plasma source on the SOL current profile are studied, respectively.Characteristic plasma parameters in the far SOL region of the EAST tokamak are used in simulations to assess the current driving ability of the electrode biasing method. Due to the limitations of computational power, the geometrical size of the simulation domain is significantly smaller than the realistic SOL, which may lead to an absence of the quasi-neutral region in the upstream plasma.At last, a heuristic method is proposed to calculate the upper bound of the total current strength.展开更多
Double layers and ion-acoustic waves are investigated by using a one-dimensional electrostatic particle-in-cell simulation code. Our results show that double layers can be formed even when the drift velocity between e...Double layers and ion-acoustic waves are investigated by using a one-dimensional electrostatic particle-in-cell simulation code. Our results show that double layers can be formed even when the drift velocity between electrons and ions is less than the electron thermal velocity. Electron and ion density depressions were clearly seen. Electrons gradually developed a distribu- tion comprising both background and beam components. In fact, as the initial electron-ion drift velocity was less than the electron thermal velocity, intense ion-acoustic waves could be found only at the places where the electron beam was located, suggesting that they are excited by the self-consistently developed electron beam. Besides the Langmuir waves and ion-acoustic waves, the beam mode excited by electron beams produced in our simulation has been clearly found.展开更多
Continuous microwave propagation through a time-varying plasma and frequency up-conversion has been demonstrated by particle-in-cell (PIC) simulation. In principle, it is possible to transform a 2.45 GHz source radiat...Continuous microwave propagation through a time-varying plasma and frequency up-conversion has been demonstrated by particle-in-cell (PIC) simulation. In principle, it is possible to transform a 2.45 GHz source radiation to an arbitrary larger frequency radiation. The energy conversion is also obtained by the theoretical analysis and has been testified by PIC simulation. The source wave was propagating in a parallel plate waveguide locally filled with the ionized gas. In this paper we would discuss the effects of the rise time, the plasma length, the switching time and the collision frequency on the energy conversion, and the methods to improve the upshift wave energy are proposed. We also put forward the new concept of the critical values of the rise time and the source wave amplitude to provide a theoretical basis for the selection of parameters in the experiments.展开更多
Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes d...Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the re¯nement of their precision.Consequently,this discourse is speci¯cally dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.展开更多
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ...Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.展开更多
The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameteri...The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.展开更多
Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on ...Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).展开更多
The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detecti...The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detection of photons with energies ranging from MeV to TeV.This project aims to conduct a comprehensive survey of the gamma-ray sky from a low-Earth orbit using an anti-coincidence detector,a tracker detector that also serves as a low-energy calorimeter,and a high-energy imaging calorimeter.We developed a Monte Carlo simulation application of the detector using the GEANT4 toolkit to evaluate the instrument performance,including the effective area,angular resolution,and energy resolution,and explored specific optimizations of the detector configuration.Our simulation-based analysis indicates that the current design of the VLAST is physically feasible,with an acceptance above 10 m^(2)sr which is four times larger than that of the Fermi-LAT,an energy resolution better than 2%at 10 GeV,and an angular resolution better than 0.2◦at 10 GeV.The VLAST project promises to make significant contributions to the field of gamma-ray astronomy and enhance our understanding of the cosmos.展开更多
基金supported by National Natural Science Foundation of China(Nos.12172356,U23B20110)the Interdisciplinary and Collaborative Teams of CAS。
文摘Particle-In-Cell(PIC)simulations were performed in this work to study the dynamics of the EUVinduced hydrogen plasma.The Monte-Carlo Collision(MCC)model was employed to deal with the collisions between charged particles and background gas molecules.The dynamic evolution of the plasma sheath,as well as the flux and energy distribution of ions impacting on the mirror surface,was discussed.It was found that the emission of secondary electrons under the EUV irradiation on the ruthenium mirror coating creates a positively charged wall and then prevents the ions from impacting on the mirror and therefore changes the flux and energy distribution of ions reaching the mirror.Furthermore,gas pressure has a notable effect on the plasma sheath and the characteristics of the ions impinging on the mirrors.With greater gas pressure,the sheath potential decreases more rapidly.The flux of ions received by the mirror grows approximately linearly and at the same time the energy corresponding to the peak flux decreases slightly.However,the EUV source intensity barely changes the sheath potential,and its influence on the ion impact is mainly limited to the approximate linear increase in ion flux.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFE03050001)partly by the National Natural Science Foundation of China (Grant No.12175160)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The direct implicit particle-in-cell is a powerful kinetic method for researching plasma characteristics.However,it is time-consuming to obtain the future electromagnetic field in such a method since the field equations contain time-dependent matrix coefficients.In this work,we propose to explicitly push particles and obtain the future electromagnetic field based on the information about the particles in the future.The new method retains the form of implicit particle pusher,but the future field is obtained by solving the traditional explicit equation.Several numerical experiments,including the motion of charged particle in electromagnetic field,plasma sheath,and free diffusion of plasma into vacuum,are implemented to evaluate the performance of the method.The results demonstrate that the proposed method can suppress finite-grid-instability resulting from the coarse spatial resolution in electron Debye length through the strong damping of high-frequency plasma oscillation,while accurately describe low-frequency plasma phenomena,with the price of losing the numerical stability at large time-step.We believe that this work is helpful for people to research the bounded plasma by using particle-in-cell simulations.
基金funded by National Natural Science Foundation of China(Nos.51507040,51736003 and 51777045)the Research Program(No.JSZL2016203C006)the Fundamental Research Funds for the Central Universities(No.HIT.NSRIF.2015079)
文摘Propellant gas flow has an important impact on the ionization and acceleration process of Hall effect thrusters (HETs). In this paper, a particle-in-cell numerical method is used to study the effect of the anode temperature, i.e., the flow speed of the propellant gas, on the discharge characteristics of a HET. The simulation results show that, no matter the magnitude of the discharge voltage, the calculated variation trends of performance parameters with the anode temperature are in good agreement with the experimental ones presented in the literature. Further mechanism analysis indicates that the magnitude of the electron temperature is responsible for the two opposing variation laws found under different discharge voltages. When the discharge voltage is low, the electron temperature is low, and so is the intensity of the propellant ionization; the variation of the thruster performance with the anode temperature is thereby determined by the variation of the neutral density that affects the propellant utilization efficiency. When the discharge voltage is high, the electron temperature is large enough to guarantee a high degree of the propellant utilization no matter the magnitude of the anode temperature. The change of the thruster performance with the anode temperature is thus dominated by the change of the electron temperature and consequently the electron-neutral collisions as well as the electron cross-field mobility that affect the current utilization efficiency.
基金Project supported by the National Natural Science of China(Grant Nos.41527804 and 41774169)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDJSSW-DQC010).
文摘Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.
基金supported by Ocean Public Welfare Scientific Research Project, State Oceanic Administration People’s Republic of China(No. 201005017)National Natural Science Foundation of China (Nos. 41274144, 41174124, 40931053, 41121003)+1 种基金CAS Key Research Program KZZD-EW-01,973 Program (2012CB825602)the Fundamental Research Funds for the Central Universities(WK2080000010)
文摘Previous electrostatic particle-in-cell (PIC) simulations have pointed out that elec- tron phase-space holes (electron holes) can be formed during the nonlinear evolution of the electron two-stream instability. The parallel cuts of the parallel and perpendicular electric field have bipolar and unipolar structures in these electron holes, respectively. In this study, two-dimensional (2D) electromagnetic PIC simulations are performed in the x - y plane to investigate the evolution of the electron two-stream instability, with the emphasis on the magnetic structures associated with these electron holes in different plasma conditions. In the simulations, the background magnetic field (Bo = Boer) is along the x direction. In weakly magnetized plasma (Ωe 〈ωpe, where Ωe and ωpe are the electron gyrofrequency and electron plasma frequency, respectively), several 2D electron holes are formed. In these 2D electron holes, the parallel cut of the fluctuating magnetic field δBx and δBz has unipolar structures, while the fluctuating magnetic field δBy has bipolar structures. In strongly magnetized plasma (Ωe 〉 ωpe), several quasi-lD electron holes are formed. The electrostatic whistler waves with streaked structures of Ey are excited. The fluctuating mag- netic field δBx and δBz also have streaked structures. The fluctuating magnetic field δBx and δBy are produced by the current in the z direction due to the electric field drift of the trapped elec- trons, while the fluctuating magnetic field δBz can be explained by the Lorentz transformation of a moving quasielectrostatic structure. The influences of the initial temperature anisotropy on the magnetic structures of the electron holes are also analyzed. The electromagnetic whistler waves are found to be excited in weakly magnetized plasma. However, they do not have any significant effects on the electrostatic structures of the electron holes.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11275156,11547304 and 11505261
文摘Reflections of a Korteweg-de Vries (KdV) solitary wave and an envelope solitary wave are studied by using the particle-in-cell simulation method. Defining the phase shift of the reflected solitary wave, we notice that there is a phase shift of the reflected KdV solitary wave, while there is no phase shift for an envelope solitary wave. It is also noted that the reflection of a KdV solitary wave at a solid boundary is equivalent to the head-on collision between two identical amplitude solitary waves.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11965019 and 11847142).
文摘We study some nonlinear waves in a viscous plasma which is confined in a finite cylinder.By averaging the physical quantities on the radial direction in some cases,we reduce this system to a simple one-dimensional model.It seems that the effects of the bounded geometry(the radius of the cylinder in this case)can be included in the damping coefficient.We notice that the amplitudes of both Korteweg–de Vries(KdV)solitary waves and dark envelope solitary waves decrease exponentially as time increases from the particle-in-cell(PIC)simulation.The dependence of damping coefficient on the cylinder radius and the viscosity coefficient is also obtained numerically and analytically.Both are in good agreement.By using a definition,we give a condition whether a solitary wave exists in a bounded plasma.Moreover,some of potential applications in laboratory experiments are suggested.
基金the support from Chinese Academy of Science(CAS)TWAS for his Ph.D studies at the University of Science and Technology of China in the category of a 2016 CAS-TWAS President’s Fellowship Awardee(Series No.2016-172)+1 种基金partially supported by National Natural Science Foundation of China(Nos.41331067,41774169,and 41527804)the Key Research Program of Frontier Sciences,CAS(QYZDJ-SSW-DQC010)
文摘By performing one-dimensional particle-in-cell simulations, the nonlinear effects of electronacoustic(EA) waves are investigated in a multispecies plasma, whose constituents are hot electrons, cold electrons, and beam electrons with immobile neutralized positive ions. Numerical analyses have identified that EA waves with a sufficiently large amplitude tend to trap cold electrons. Because EA waves are dispersive, where the wave modes with different wavenumbers have different phase velocities, the trapping may lead to the mixing of cold electrons. The cold electrons finally get thermalized or heated. The investigation also shows that the excited EA waves give rise to a broad range of wave frequencies, which may be helpful for understanding the broadband-electrostatic-noise spectrum in the Earth’s auroral region.
基金supported by National Natural Science Foundation of China (Nos. 51828101 and No.11875294)the National Key R&D Program of China (No. 2017YFE0301100)。
文摘The property of scrape-off layer(SOL) currents induced by a biased electrode is investigated by fully kinetic collisionless two-dimensional particle-in-cell(PIC) simulations. A reduced Vlasov–Darwin model is employed, which is capable of describing the low-frequency kinetic behavior without electromagnetic vacuum modes(w^2=w_(pe)~2+ c^2k^2). A linear decay distribution of electron currents parallel to the background magnetic field is exhibited. Simulation analyses indicate that the cross field ion current is a key factor in sheath formation and global current balance. The influences of electrode area, biasing voltage and plasma source on the SOL current profile are studied, respectively.Characteristic plasma parameters in the far SOL region of the EAST tokamak are used in simulations to assess the current driving ability of the electrode biasing method. Due to the limitations of computational power, the geometrical size of the simulation domain is significantly smaller than the realistic SOL, which may lead to an absence of the quasi-neutral region in the upstream plasma.At last, a heuristic method is proposed to calculate the upper bound of the total current strength.
基金supported by National Natural Science Foundation of China(Nos.40974097,41204115)the Excellent Youth Foundation of Shandong Scientific Committee(No.JQ201212)CAS Key Laboratory of Basic Plasma Physics,Department of Geophysics and Planetary Science,University of Science and Technology of China
文摘Double layers and ion-acoustic waves are investigated by using a one-dimensional electrostatic particle-in-cell simulation code. Our results show that double layers can be formed even when the drift velocity between electrons and ions is less than the electron thermal velocity. Electron and ion density depressions were clearly seen. Electrons gradually developed a distribu- tion comprising both background and beam components. In fact, as the initial electron-ion drift velocity was less than the electron thermal velocity, intense ion-acoustic waves could be found only at the places where the electron beam was located, suggesting that they are excited by the self-consistently developed electron beam. Besides the Langmuir waves and ion-acoustic waves, the beam mode excited by electron beams produced in our simulation has been clearly found.
基金supported by National Natural Science Foundation of China(Nos.51677145,11622542 and U1537210)
文摘Continuous microwave propagation through a time-varying plasma and frequency up-conversion has been demonstrated by particle-in-cell (PIC) simulation. In principle, it is possible to transform a 2.45 GHz source radiation to an arbitrary larger frequency radiation. The energy conversion is also obtained by the theoretical analysis and has been testified by PIC simulation. The source wave was propagating in a parallel plate waveguide locally filled with the ionized gas. In this paper we would discuss the effects of the rise time, the plasma length, the switching time and the collision frequency on the energy conversion, and the methods to improve the upshift wave energy are proposed. We also put forward the new concept of the critical values of the rise time and the source wave amplitude to provide a theoretical basis for the selection of parameters in the experiments.
基金funded by the Chinese Academy of Medical Science health innovation project(grant nos.2021-I2M-1-042,2021-I2M-1-058,and 2022-I2M-C&T-A-005)Tianjin Outstanding Youth Fund Project(grant no.20JCJQIC00230)CAMS Innovation Fund for Medical Sciences(CIFMS)(grant no.2022-I2M-C&T-B-012).
文摘Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the re¯nement of their precision.Consequently,this discourse is speci¯cally dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.
基金supported by the National Natural Science Foundation of China(NNSFC)grants 42074202,42274196Strategic Priority Research Program of Chinese Academy of Sciences grant XDB41000000ISSI-BJ International Team Interaction between magnetic reconnection and turbulence:From the Sun to the Earth。
文摘Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.
基金supported by the National Natural Science Foundation of China(Grant Nos.42175099,42027804,42075073)the Innovative Project of Postgraduates in Jiangsu Province in 2023(Grant No.KYCX23_1319)+3 种基金supported by the National Natural Science Foundation of China(Grant No.42205080)the Natural Science Foundation of Sichuan(Grant No.2023YFS0442)the Research Fund of Civil Aviation Flight University of China(Grant No.J2022-037)supported by the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(Earth Lab)。
文摘The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.
基金supported by the National Natural Science Foundation of China(Nos.12174208 and 32227802)National Key Research and Development Program of China(No.2022YFC3400600)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)Fundamental Research Funds for the Central Universities(Nos.2122021337 and 2122021405)the 111 Project(No.B23045).
文摘Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).
基金supported by the National Key Research and Development Program of China(No.2021YFA0718404)the National Natural Science Foundation of China(Nos.12220101003,12173098,U2031149)+2 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(CAS)(No.YSBR-061)the Scientific Instrument Developing Project of CAS(No.GJJSTD20210009)the Youth Innovation Promotion Association of CAS,and the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(No.YESS20220197).
文摘The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detection of photons with energies ranging from MeV to TeV.This project aims to conduct a comprehensive survey of the gamma-ray sky from a low-Earth orbit using an anti-coincidence detector,a tracker detector that also serves as a low-energy calorimeter,and a high-energy imaging calorimeter.We developed a Monte Carlo simulation application of the detector using the GEANT4 toolkit to evaluate the instrument performance,including the effective area,angular resolution,and energy resolution,and explored specific optimizations of the detector configuration.Our simulation-based analysis indicates that the current design of the VLAST is physically feasible,with an acceptance above 10 m^(2)sr which is four times larger than that of the Fermi-LAT,an energy resolution better than 2%at 10 GeV,and an angular resolution better than 0.2◦at 10 GeV.The VLAST project promises to make significant contributions to the field of gamma-ray astronomy and enhance our understanding of the cosmos.