Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing...Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.展开更多
For design and application of particulate reinforced metal matrix composites(PRMMCs),it is essential to predict the material strengths and understand how do they relate to constituents and microstructural features.To ...For design and application of particulate reinforced metal matrix composites(PRMMCs),it is essential to predict the material strengths and understand how do they relate to constituents and microstructural features.To this end,a computational approach consists of the direct methods,homogenization,and statistical analyses is introduced in our previous studies.Since failure of PRMMC materials are often caused by time-varied combinations of tensile and shear stresses,the established approach is extended in the present work to take into account of these situations.In this paper,ultimate strengths and endurance limits of an exemplary PRMMC material,WC-Co,are predicted under three independently varied tensile and shear stresses.In order to cover the entire load space with least amount of weight factors,a new method for generating optimally distributed weight factors in an n dimensional space is formulated.Employing weight factors determined by this algorithm,direct method calculations were performed on many statistically equivalent representative volume elements(SERVE)samples.Through analyzing statistical characteristics associated with results the study suggests a simplified approach to estimate the material strength under superposed stresses without solving the difficult high dimensional shakedown problem.展开更多
Some structural parameters of the metal matrix composite, including particulate shape and distribution do not influence the elastic modulus. A prediction model for the elastic modulus of particulate reinforced metal m...Some structural parameters of the metal matrix composite, including particulate shape and distribution do not influence the elastic modulus. A prediction model for the elastic modulus of particulate reinforced metal matrix Al composite was developed and improved. Expressions of rigidity and flexibility of the rule of mixing were proposed. A five-zone model for elasticity performance calculation of the composite was proposed. The five-zone model is thought to be able to reflect the effects of the MMC interface on elastic modulus of the composite. The model overcomes limitations of the currently-understood rigidity and flexibility of the rule of mixing. The original idea of a five-zone model is to propose particulate/interface interactive zone and matrix/interface interactive zone. By integrating organically with the law of mixing, the new model is found to be capable of predicting the engineering elastic constants of the MMC composite.展开更多
The alumina toughened zirconia(ATZ) ceramic particle reinforced gray iron matrix surface composite was successfully manufactured by pressureless infi ltration. The porous preform played a key role in the infi ltrating...The alumina toughened zirconia(ATZ) ceramic particle reinforced gray iron matrix surface composite was successfully manufactured by pressureless infi ltration. The porous preform played a key role in the infi ltrating progress. The microstructure was observed by scanning electron microscopy(SEM); the phase constitutions was analyzed by X-ray diffraction(XRD); and the hardness and wear resistance of selected specimens were tested by hardness testing machine and abrasion testing machine, respectively. The addition of high carbon ferrochromium powders leads to the formation of white iron during solidifi cation. The wear volume loss rates of ATZ ceramic particle reinforced gray iron matrix surface composite decreases fi rst, and then tends to be stable. The wear resistance of the composite is 2.7 times higher than that of gray iron matrix. The reason is a combination of the surface hardness increase of gray iron matrix and ATZ ceramic particles and alloy carbides protecting effect on gray iron matrix.展开更多
In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape...In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape, arrangement pattern and dimensional variance mode which have no obvious influence on the elastic modulus of a composite, and improved the precision of the method by stressing the interaction of interfaces with pariculates and maxtrix of the composite. The five- zone model can reflect effects of interface modulus on elastic modulus of composite. It overcomes limitations of expressions of rigidity mixed law and flexibility mixed law. The original idea of five zone model is to put forward the particulate/interface interactive zone and matrix/interface interactive zone. By organically integrating the rigidity mixed law and flexibility mixed law, the model can predict the engineering elastic constant of a composite effectively.展开更多
The mathematical models were developed to predict the ultimate tensile strength (UTS) and hardness of Al/TiB2 MMCs fabricated by in situ reaction process. The process parameters include temperature, reaction time an...The mathematical models were developed to predict the ultimate tensile strength (UTS) and hardness of Al/TiB2 MMCs fabricated by in situ reaction process. The process parameters include temperature, reaction time and mass fraction of TiB2. The in-situ casting was carried out based on three-factor five-level central composite rotatable design using response surface methodology (RSM). The validation of the model was carried out using ANOVA. The mathematical models developed for the mechanical properties were predicted at 95% confidence limit.展开更多
This paper relates to the fabrication of aluminium matrix composites with various amounts of Al 2O 3 fiber and SiC whiskers by rheocasting, powder metallurgy process and liquid metal infiltration process. To analy...This paper relates to the fabrication of aluminium matrix composites with various amounts of Al 2O 3 fiber and SiC whiskers by rheocasting, powder metallurgy process and liquid metal infiltration process. To analyze wetting characteristics, the cross sections of composites are examined by scanning electron microscopy(SEM). The bending tests and microhardness tests are performed to evaluate mechanical properties of composites. The results show that the composites produced by liquid metal infiltration give better properties than those produced by rheocasting or powder metallurgy process, primarily due to the decrease of porosity and reinforcement cluster. For liquid metal infiltration composites, a good adhesion between the fiber and matrix is found. Three points bending test results show that there is an increase in flexural modulus with reinforcement contents. In addition, a series of microhardness tests are conducted to determine the effect of heat treatment on the mechanical property of Al 2O 3/Al composites.展开更多
Aluminum matrix particulate reinforced composites are of significant interest to industry, but it’s difficult to provide stable properties for this group of material. The mechanical properties of metal matrix composi...Aluminum matrix particulate reinforced composites are of significant interest to industry, but it’s difficult to provide stable properties for this group of material. The mechanical properties of metal matrix composites are deeply influenced by the distribution of reinforcement particulates in the matrix. In this paper uniformity of SiC particles distribution in Al-based composites produced by stir casting and powder metallurgy technique is assessed. Analysis is carried out by means of classical and computer quantification metallographic image analysis methods. In addition, we suggest setting hardness distribution in cross section of samples as an indicator of reinforcement distribution uniformity in the matrix.展开更多
High strength-to-weight ratio of non-ferrous alloys, such as aluminium, magnesium and titanium alloys, are considered to be possible replacement of widely accepted steels in transportation and automobile sectors. Amon...High strength-to-weight ratio of non-ferrous alloys, such as aluminium, magnesium and titanium alloys, are considered to be possible replacement of widely accepted steels in transportation and automobile sectors. Among these alloys, magnesium is self explosive and titanium is costlier, and aluminium is most likely to replace steels. Application of aluminium or its alloys is also thought of as an appropriate replacement in defence field, especially to enhance the easiness in mobility of combat vehicles while maintaining the same standard as that of conventional armour grade steels. Hence most of the investigations have been confined to aluminium or its alloys as base material and open an era of developing the newer composite materials to address the major limitation, i.e. tribological properties. The surface composites can be fabricated by incorporating the ceramic carbides like silicon carbide, carbides of transition metals and oxides of aluminium using surface modification techniques, such as high energy laser melt treatment, high energy electron beam irradiation and thermal spray process which are based on fusion route. These techniques yield the fusion related problems, such as interfacial reaction, pin holes, shrinkage cavities or voids and other casting related defects, and pave the way to need of an efficient technique which must be based on solid state. Recently developed friction stir processing technique was used in the present investigation for surface modification of AA7075 aluminum alloy, which is an alternative to steels. In the present investigation, 160 μm sized boron carbide powder was procured and was reduced to 60 μm and 30 μm using high energy ball mill. Subsequently these powders were used to fabricate the surface composites using friction stir processing.Ballistic performance testing as per the military standard(JIS.0108.01) was carried out. In the present work, an analytical method of predicting the ballistic behavior of surface composites was developed. This method was based on energy balance, i.e., the initial energy of impact is same as that of energy absorbed by multi layers. An attempt also has been made to validate the analytical results with the experimental findings. Variation between the analytical and experimental results may be accounted due to the assumptions considering such as isotropic behavior of target and shearing area of contact as cylindrical instead of conical interface As the analytical model yields the ballistic performance in the closer proximity of experimentally obtained, it can be considered to be an approximation to evaluate the ballistic performance of targets.展开更多
文摘Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.
基金Supported by the National Natural Science Foundation of China(Grant No.52075033)Fundamental Research Funds for the Central Universities of China(Grant No.2020RC202).
文摘For design and application of particulate reinforced metal matrix composites(PRMMCs),it is essential to predict the material strengths and understand how do they relate to constituents and microstructural features.To this end,a computational approach consists of the direct methods,homogenization,and statistical analyses is introduced in our previous studies.Since failure of PRMMC materials are often caused by time-varied combinations of tensile and shear stresses,the established approach is extended in the present work to take into account of these situations.In this paper,ultimate strengths and endurance limits of an exemplary PRMMC material,WC-Co,are predicted under three independently varied tensile and shear stresses.In order to cover the entire load space with least amount of weight factors,a new method for generating optimally distributed weight factors in an n dimensional space is formulated.Employing weight factors determined by this algorithm,direct method calculations were performed on many statistically equivalent representative volume elements(SERVE)samples.Through analyzing statistical characteristics associated with results the study suggests a simplified approach to estimate the material strength under superposed stresses without solving the difficult high dimensional shakedown problem.
基金Project(7884, CSTC2004DE4002) supported by the Chongqing Science and Technology Commission
文摘Some structural parameters of the metal matrix composite, including particulate shape and distribution do not influence the elastic modulus. A prediction model for the elastic modulus of particulate reinforced metal matrix Al composite was developed and improved. Expressions of rigidity and flexibility of the rule of mixing were proposed. A five-zone model for elasticity performance calculation of the composite was proposed. The five-zone model is thought to be able to reflect the effects of the MMC interface on elastic modulus of the composite. The model overcomes limitations of the currently-understood rigidity and flexibility of the rule of mixing. The original idea of a five-zone model is to propose particulate/interface interactive zone and matrix/interface interactive zone. By integrating organically with the law of mixing, the new model is found to be capable of predicting the engineering elastic constants of the MMC composite.
基金financially supported by the Scientific Research Fund of Si Chuan Provincial Education Department(No.17ZA0395)the Doctoral Program Foundation of Southwest University of Science and Technology(No.10zx7113)
文摘The alumina toughened zirconia(ATZ) ceramic particle reinforced gray iron matrix surface composite was successfully manufactured by pressureless infi ltration. The porous preform played a key role in the infi ltrating progress. The microstructure was observed by scanning electron microscopy(SEM); the phase constitutions was analyzed by X-ray diffraction(XRD); and the hardness and wear resistance of selected specimens were tested by hardness testing machine and abrasion testing machine, respectively. The addition of high carbon ferrochromium powders leads to the formation of white iron during solidifi cation. The wear volume loss rates of ATZ ceramic particle reinforced gray iron matrix surface composite decreases fi rst, and then tends to be stable. The wear resistance of the composite is 2.7 times higher than that of gray iron matrix. The reason is a combination of the surface hardness increase of gray iron matrix and ATZ ceramic particles and alloy carbides protecting effect on gray iron matrix.
基金Funded by Academician Foundation of Chongqing Project (2002-6285).
文摘In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape, arrangement pattern and dimensional variance mode which have no obvious influence on the elastic modulus of a composite, and improved the precision of the method by stressing the interaction of interfaces with pariculates and maxtrix of the composite. The five- zone model can reflect effects of interface modulus on elastic modulus of composite. It overcomes limitations of expressions of rigidity mixed law and flexibility mixed law. The original idea of five zone model is to put forward the particulate/interface interactive zone and matrix/interface interactive zone. By organically integrating the rigidity mixed law and flexibility mixed law, the model can predict the engineering elastic constant of a composite effectively.
文摘The mathematical models were developed to predict the ultimate tensile strength (UTS) and hardness of Al/TiB2 MMCs fabricated by in situ reaction process. The process parameters include temperature, reaction time and mass fraction of TiB2. The in-situ casting was carried out based on three-factor five-level central composite rotatable design using response surface methodology (RSM). The validation of the model was carried out using ANOVA. The mathematical models developed for the mechanical properties were predicted at 95% confidence limit.
文摘This paper relates to the fabrication of aluminium matrix composites with various amounts of Al 2O 3 fiber and SiC whiskers by rheocasting, powder metallurgy process and liquid metal infiltration process. To analyze wetting characteristics, the cross sections of composites are examined by scanning electron microscopy(SEM). The bending tests and microhardness tests are performed to evaluate mechanical properties of composites. The results show that the composites produced by liquid metal infiltration give better properties than those produced by rheocasting or powder metallurgy process, primarily due to the decrease of porosity and reinforcement cluster. For liquid metal infiltration composites, a good adhesion between the fiber and matrix is found. Three points bending test results show that there is an increase in flexural modulus with reinforcement contents. In addition, a series of microhardness tests are conducted to determine the effect of heat treatment on the mechanical property of Al 2O 3/Al composites.
文摘Aluminum matrix particulate reinforced composites are of significant interest to industry, but it’s difficult to provide stable properties for this group of material. The mechanical properties of metal matrix composites are deeply influenced by the distribution of reinforcement particulates in the matrix. In this paper uniformity of SiC particles distribution in Al-based composites produced by stir casting and powder metallurgy technique is assessed. Analysis is carried out by means of classical and computer quantification metallographic image analysis methods. In addition, we suggest setting hardness distribution in cross section of samples as an indicator of reinforcement distribution uniformity in the matrix.
基金Financial assistance from Armament research board,New Delhi,India
文摘High strength-to-weight ratio of non-ferrous alloys, such as aluminium, magnesium and titanium alloys, are considered to be possible replacement of widely accepted steels in transportation and automobile sectors. Among these alloys, magnesium is self explosive and titanium is costlier, and aluminium is most likely to replace steels. Application of aluminium or its alloys is also thought of as an appropriate replacement in defence field, especially to enhance the easiness in mobility of combat vehicles while maintaining the same standard as that of conventional armour grade steels. Hence most of the investigations have been confined to aluminium or its alloys as base material and open an era of developing the newer composite materials to address the major limitation, i.e. tribological properties. The surface composites can be fabricated by incorporating the ceramic carbides like silicon carbide, carbides of transition metals and oxides of aluminium using surface modification techniques, such as high energy laser melt treatment, high energy electron beam irradiation and thermal spray process which are based on fusion route. These techniques yield the fusion related problems, such as interfacial reaction, pin holes, shrinkage cavities or voids and other casting related defects, and pave the way to need of an efficient technique which must be based on solid state. Recently developed friction stir processing technique was used in the present investigation for surface modification of AA7075 aluminum alloy, which is an alternative to steels. In the present investigation, 160 μm sized boron carbide powder was procured and was reduced to 60 μm and 30 μm using high energy ball mill. Subsequently these powders were used to fabricate the surface composites using friction stir processing.Ballistic performance testing as per the military standard(JIS.0108.01) was carried out. In the present work, an analytical method of predicting the ballistic behavior of surface composites was developed. This method was based on energy balance, i.e., the initial energy of impact is same as that of energy absorbed by multi layers. An attempt also has been made to validate the analytical results with the experimental findings. Variation between the analytical and experimental results may be accounted due to the assumptions considering such as isotropic behavior of target and shearing area of contact as cylindrical instead of conical interface As the analytical model yields the ballistic performance in the closer proximity of experimentally obtained, it can be considered to be an approximation to evaluate the ballistic performance of targets.