[ Objecllve] To establish a high-frequency regeneration system of chicory ( Cichodum intybus L. ) using leaf segments of aseptic seed- lings. E Method] Calluses and adventitious buds of chicory were induced by inocu...[ Objecllve] To establish a high-frequency regeneration system of chicory ( Cichodum intybus L. ) using leaf segments of aseptic seed- lings. E Method] Calluses and adventitious buds of chicory were induced by inoculating explants on MS medium supplemented with 6-BA (6-benayl aminopurine) and NAP, (naphthylacetic acid) at different final concentrations. [ Result] When lower part of leaves derived from 20-day-old seedlings was used as explant and inoculated on MS medium containing 2.0 rng/L 6-BA, 0.5 mg/L NAA and 40 g/L sucrose, the frequency of adventitious bud formation was 90.0%. When the regenerated shoots were cultured in 1/2 MS medium containing 0.1 mg/L NAA, the frequency of root forma- tion was 88.3%. All rooted plants transplanted in pots could survive and grew well without abnormal shape. [ Conclusion] Better differentiation of adventitious buds can be achieved by inoculating the lower part of leaves derived from 20-day-old seedlings on MS medium containing 2.0 mg/L 6- BA, O. 5 mg/L NAP, and 40 g/L sucrose. The 1/2 MS medium containing O. 1 mg/L NAP, is most suitable for rooting.展开更多
To reveal the suitability of using mature embryos as an explant source in wheat tissue culture, mature embryos from eight common wheat cultivars (Triticum aestivum L. cv.) were cultured with or without endosperm to ...To reveal the suitability of using mature embryos as an explant source in wheat tissue culture, mature embryos from eight common wheat cultivars (Triticum aestivum L. cv.) were cultured with or without endosperm to test their efficiency of callus induction and plant regeneration. When embryos were cultured together with endosperm (endosperm-supported culture, ES), the percentage of callus induction was significantly lower than that when embryos were cultured in the absence of endosperm (non-endosperm-supported culture, NES). This pattern was evident in most genotypes, regardless of whether 2 or 8 mg L^-1 2,4-D was added in the NES culture. However, in ES culture, more induced calli were differentiated into distinct green spots and they further developed into plantlets. Thus, more plants were regenerated in ES culture than in the NES treatment. Most of the eight tested genotypes showed a significant difference in callus induction rate and plantlet regeneration in both ES and NES cultures. In addition, the enzymatic activity of oxalate oxidase in the callus of ES culture condition was obviously higher than that in the callus of NES culture condition, suggesting that the activity of oxalate oxidase may be a parameter for selection of calli with potential for plantlet regeneration. These results indicate that wheat mature embryos are valuable explants for highly efficient callus induction and plant regeneration, if proper treatment and medium are used.展开更多
To establish a highly efficient plant regeneration system for wheat genetic transformation, the effects of three different concentrations of dicamba and two different sugar types on callus induction and plant regenera...To establish a highly efficient plant regeneration system for wheat genetic transformation, the effects of three different concentrations of dicamba and two different sugar types on callus induction and plant regeneration from mature embryo cultures were evaluated. Callus induction and plant regeneration were obtained from mature embryos of two commercial cultivars Zhoumai 18 and Yumai 34 (Triticum aestivum L.) cultured on L3 basal medium. The results showed that the efficiency of mature embryo culture was significantly influenced by the genotypes, sugar types and dicamba concentrations. 4 mg L^-1 dicamba proved the best effective for inducing embryogenic callus and also gave the highest proportion of plants regenerated across the two cultivars. Substitution of maltose by sucrose significantly improved the plant regeneration efficiency in both cultivars. There was a significant interaction between genotype-by-sugar types, and sugar types-bydicamba concentrations. Overall, Zhoumai 18 gave the highest frequency of plant regeneration (82.65%) when dicamba concentration was 4.0 mg L^-1 and with sucrose in initial callus induction. These results will facilitate genetic transformation work with elite wheat.展开更多
Objective The aim was to explore callus induction and plant regeneration of perennial ryegrass, as well as provide the foundation for transgenic research on perennial ryegrass.[ Methed] Mature seeds of perennial ryegr...Objective The aim was to explore callus induction and plant regeneration of perennial ryegrass, as well as provide the foundation for transgenic research on perennial ryegrass.[ Methed] Mature seeds of perennial ryegrass were used as explants to study the effects of different hormone compositions on callus induction, proliferation and plant differentiation. Result The result showed that the induction rate achieved its highest on 2,4-D of 8 mg/L combining with 6-BA of 0.025 mg/L, which was up to 56.42%. Callus were differentiated after two to three generations, the highest differentiation rate 34.14% was achieved in the medium contained MS medium with 6-BA of 2 mg/L, and the differentiation rate was obviously affected by the callus condition after proliferation. The root inducing medium, containing 0.5 mg/L NAA and MS medium with half of macroelement, gained 98% root inducing rate. Conclusien A high frequency genetic regeneration system was established.展开更多
[Objective] The aim was to explore the conditions of high frequency induction of embryonic callus and plant regeneration of maize. [Method] Immature embryos of maize inbred lines were used as explants to study the eff...[Objective] The aim was to explore the conditions of high frequency induction of embryonic callus and plant regeneration of maize. [Method] Immature embryos of maize inbred lines were used as explants to study the effect of different 2,4-D concentrations on the induction of callus,the effect of different 6-BA concentrations on the differentiation of test-tube plantlet,as well as the effect of different IBA concentrations on the rooting of test-tube plantlet. [Result] 2,4-D showed obvious effect on the induction of inducement rate of maize,and the optimum induction medium was:N6 + 2 mg/L of 2,4-D + 500 mg/L of CH + 500 mg/L of Pro +10 mg/L of AgNO3; the optimum differentiation medium was:N6 + 0.5 mg/L of BA + 500 mg/L of Pro; the optimum for the rooting of test-tube plantlet was 1/2 MS + 0.5 mg/L of IBA. [Conclusion] The study had provided basis for the genetic transformation of maize.展开更多
The study aimed to optimize the induction and differentiation medium by exploreing different tissue culture of Saposhnikovia divaricata (Turcz.) Schischk. In tissue culture with the root, stem segments, young leaf, ...The study aimed to optimize the induction and differentiation medium by exploreing different tissue culture of Saposhnikovia divaricata (Turcz.) Schischk. In tissue culture with the root, stem segments, young leaf, cotyledonary node and axillary bud of Saposhnikovia divaricata (Turcz.) Schischk as explants, a lot of plantleles were obtained and the corresponding plant regeneration-system was established. The results showed that when use MS+1.0 mg·L^-1 6-BA+0.2 mg·L^-1 NAA as callus induction medium, the cotyledonary node had the highest bourgeon rate, and its callus was better than any others; MS+2 mg·L^-1 6-BA+0.4 mg·L^-1 NAA was the best adventitious buds induction medium, and the best adventitious buds induced condition was 3% sucrose as carbon source, illumination for 12-14 h·d^-1 and pH 5.8, The best rootage medium was 1/2 MS+0.5 mg·L^-1 NAA.展开更多
To determine the most effective dose of arabinogalactan-protein (AGP) in regeneration medium, mature embryos of genotypes in three different ploidy levels (Triticum aestivum L. cv. Ikizce-96, Triticum durum Desf. c...To determine the most effective dose of arabinogalactan-protein (AGP) in regeneration medium, mature embryos of genotypes in three different ploidy levels (Triticum aestivum L. cv. Ikizce-96, Triticum durum Desf. cv. Mirzabey and Hordeum vulgare L. cv. Tokak) were used to establish an efficient plant regeneration system for cereals. Percentage of callus production, capacity of regeneration were calculated, and also culture effect, root, stem, and total plant length of regenerant plants were observed in six different regeneration media (MS control, MS+2, 5, 7, 10, 12 mg L-1 AGP) in these three different genotypes. According to the results, the highest amount of callus production was found in Ikizce-96 as 93.75% using 5 mg L-1 dicamba and 1 mg L-1 kinetin in induction medium. However, the most improved callus was observed in diploid barley Tokak as 179.95 mg in weight and 6.18 mm in diameter, respectively. The highest regeneration capacity was observed in the dose of 5 mg L-1 AGP in MS of all the genotypes and hexaploid wheat Ikizce-96 gave the best results with the highest regeneration capacity and culture effects (94.86 and 92.5%) in the same dose of AGE These results indicated that effective dose of AGP in regeneration medium increase plant regeneration in calli derived from cereal mature embryos.展开更多
Objective:To develop the reproducible in vitro propagation protocols for the medicinally important plants viz.,Achyranthes aspera(A.aspera)L.and Achyranthes bidentata(A.bidentata)Blume using nodal segments as explants...Objective:To develop the reproducible in vitro propagation protocols for the medicinally important plants viz.,Achyranthes aspera(A.aspera)L.and Achyranthes bidentata(A.bidentata)Blume using nodal segments as explants.Methods:Young shoots of A.aspera and A.bidentata were harvested and washed with running tap water and treated with 0.1%bavistin and rinsed twice with distilled water.Then the explants were surface sterilized with 0.1%(w/v)HgCl_2 solutions for I min.After rinsing with sterile distilled water for 3-4 times,nodal segments were cut into smaller segments(1 cm)and used as the explants.The explants were placed horizontally as well as vertically on solid basal Murashige and Skoog(MS)medium supplemented with 3%sucrose,0.6%(w/v)agar(HiMedia,Mumbai)and different concentration and combination of 6-benzyl amino purine(BAP),kinetin(Kin),naphthalene acetic acid(NAA)and indole acetic acid(IAA)for direct regeneration.Results:Adventitious proliferation was obtained from A.aspera and A.bidentata nodal segments inoculated on MS basal medium with 3%sucrose and augmented with BAP and Kin with varied frequency.MS medium augmented with 3.0 mg/L of BAP showed the highest percentage(93.60±0.71)of shootlets formation for A.aspera and(94.70±0.53)percentages for A.bidentata.Maximum number of shoots/explants(10.60±0.36)for A.aspera and(9.50±0.56)for A.bidentata was observed in MS medium fortified with 5.0 mg/L of BAP.For A.aspera,maximum mean length(5.50±0.34)of shootlets was obtained in MS medium augmented with 3.0 mg/L of Kin and for A.bidentata(5.40±0.61)was observed in the very same concentration.The highest percentage,maximum number of rootlets/shootlet and mean length of rootlets were observed in 1/2 MS medium supplemented with 1.0 mg/L of 1BA.Seventy percentages of plants were successfully established in polycups.Sixty eight percentages of plants were well established in the green house condition.Sixty five percentages of plants were established in the field.Conclusions:The results have shown that use of nodal buds is an alternative reproducible and dependable method for clonal propagation of A.aspera and A.bidentata.The high rate of direct shoot-root multiplication and their high rate of post-hardening survival indicate that this protocol can he easily adopted for commercial large scale cultivation.展开更多
基金funded by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China ( 08KJD180011)Key Project of Nanjing Xiaozhuang University ( 2007NXY01)
文摘[ Objecllve] To establish a high-frequency regeneration system of chicory ( Cichodum intybus L. ) using leaf segments of aseptic seed- lings. E Method] Calluses and adventitious buds of chicory were induced by inoculating explants on MS medium supplemented with 6-BA (6-benayl aminopurine) and NAP, (naphthylacetic acid) at different final concentrations. [ Result] When lower part of leaves derived from 20-day-old seedlings was used as explant and inoculated on MS medium containing 2.0 rng/L 6-BA, 0.5 mg/L NAA and 40 g/L sucrose, the frequency of adventitious bud formation was 90.0%. When the regenerated shoots were cultured in 1/2 MS medium containing 0.1 mg/L NAA, the frequency of root forma- tion was 88.3%. All rooted plants transplanted in pots could survive and grew well without abnormal shape. [ Conclusion] Better differentiation of adventitious buds can be achieved by inoculating the lower part of leaves derived from 20-day-old seedlings on MS medium containing 2.0 mg/L 6- BA, O. 5 mg/L NAP, and 40 g/L sucrose. The 1/2 MS medium containing O. 1 mg/L NAP, is most suitable for rooting.
文摘To reveal the suitability of using mature embryos as an explant source in wheat tissue culture, mature embryos from eight common wheat cultivars (Triticum aestivum L. cv.) were cultured with or without endosperm to test their efficiency of callus induction and plant regeneration. When embryos were cultured together with endosperm (endosperm-supported culture, ES), the percentage of callus induction was significantly lower than that when embryos were cultured in the absence of endosperm (non-endosperm-supported culture, NES). This pattern was evident in most genotypes, regardless of whether 2 or 8 mg L^-1 2,4-D was added in the NES culture. However, in ES culture, more induced calli were differentiated into distinct green spots and they further developed into plantlets. Thus, more plants were regenerated in ES culture than in the NES treatment. Most of the eight tested genotypes showed a significant difference in callus induction rate and plantlet regeneration in both ES and NES cultures. In addition, the enzymatic activity of oxalate oxidase in the callus of ES culture condition was obviously higher than that in the callus of NES culture condition, suggesting that the activity of oxalate oxidase may be a parameter for selection of calli with potential for plantlet regeneration. These results indicate that wheat mature embryos are valuable explants for highly efficient callus induction and plant regeneration, if proper treatment and medium are used.
基金supported by the Outstanding Youth Foundation,China (0512001600)the Natural Scientific Foundation of Henan Province,China(0411032200)
文摘To establish a highly efficient plant regeneration system for wheat genetic transformation, the effects of three different concentrations of dicamba and two different sugar types on callus induction and plant regeneration from mature embryo cultures were evaluated. Callus induction and plant regeneration were obtained from mature embryos of two commercial cultivars Zhoumai 18 and Yumai 34 (Triticum aestivum L.) cultured on L3 basal medium. The results showed that the efficiency of mature embryo culture was significantly influenced by the genotypes, sugar types and dicamba concentrations. 4 mg L^-1 dicamba proved the best effective for inducing embryogenic callus and also gave the highest proportion of plants regenerated across the two cultivars. Substitution of maltose by sucrose significantly improved the plant regeneration efficiency in both cultivars. There was a significant interaction between genotype-by-sugar types, and sugar types-bydicamba concentrations. Overall, Zhoumai 18 gave the highest frequency of plant regeneration (82.65%) when dicamba concentration was 4.0 mg L^-1 and with sucrose in initial callus induction. These results will facilitate genetic transformation work with elite wheat.
基金Supported by National Natural Science Foundation of China(30471274)~~
文摘Objective The aim was to explore callus induction and plant regeneration of perennial ryegrass, as well as provide the foundation for transgenic research on perennial ryegrass.[ Methed] Mature seeds of perennial ryegrass were used as explants to study the effects of different hormone compositions on callus induction, proliferation and plant differentiation. Result The result showed that the induction rate achieved its highest on 2,4-D of 8 mg/L combining with 6-BA of 0.025 mg/L, which was up to 56.42%. Callus were differentiated after two to three generations, the highest differentiation rate 34.14% was achieved in the medium contained MS medium with 6-BA of 2 mg/L, and the differentiation rate was obviously affected by the callus condition after proliferation. The root inducing medium, containing 0.5 mg/L NAA and MS medium with half of macroelement, gained 98% root inducing rate. Conclusien A high frequency genetic regeneration system was established.
基金Supported by Natural Science Foundation of Guangxi Province(Guikezi 0991096)~~
文摘[Objective] The aim was to explore the conditions of high frequency induction of embryonic callus and plant regeneration of maize. [Method] Immature embryos of maize inbred lines were used as explants to study the effect of different 2,4-D concentrations on the induction of callus,the effect of different 6-BA concentrations on the differentiation of test-tube plantlet,as well as the effect of different IBA concentrations on the rooting of test-tube plantlet. [Result] 2,4-D showed obvious effect on the induction of inducement rate of maize,and the optimum induction medium was:N6 + 2 mg/L of 2,4-D + 500 mg/L of CH + 500 mg/L of Pro +10 mg/L of AgNO3; the optimum differentiation medium was:N6 + 0.5 mg/L of BA + 500 mg/L of Pro; the optimum for the rooting of test-tube plantlet was 1/2 MS + 0.5 mg/L of IBA. [Conclusion] The study had provided basis for the genetic transformation of maize.
基金Supported by Natural Science Foundation of Heilongjiang Province (C2005-31)
文摘The study aimed to optimize the induction and differentiation medium by exploreing different tissue culture of Saposhnikovia divaricata (Turcz.) Schischk. In tissue culture with the root, stem segments, young leaf, cotyledonary node and axillary bud of Saposhnikovia divaricata (Turcz.) Schischk as explants, a lot of plantleles were obtained and the corresponding plant regeneration-system was established. The results showed that when use MS+1.0 mg·L^-1 6-BA+0.2 mg·L^-1 NAA as callus induction medium, the cotyledonary node had the highest bourgeon rate, and its callus was better than any others; MS+2 mg·L^-1 6-BA+0.4 mg·L^-1 NAA was the best adventitious buds induction medium, and the best adventitious buds induced condition was 3% sucrose as carbon source, illumination for 12-14 h·d^-1 and pH 5.8, The best rootage medium was 1/2 MS+0.5 mg·L^-1 NAA.
文摘To determine the most effective dose of arabinogalactan-protein (AGP) in regeneration medium, mature embryos of genotypes in three different ploidy levels (Triticum aestivum L. cv. Ikizce-96, Triticum durum Desf. cv. Mirzabey and Hordeum vulgare L. cv. Tokak) were used to establish an efficient plant regeneration system for cereals. Percentage of callus production, capacity of regeneration were calculated, and also culture effect, root, stem, and total plant length of regenerant plants were observed in six different regeneration media (MS control, MS+2, 5, 7, 10, 12 mg L-1 AGP) in these three different genotypes. According to the results, the highest amount of callus production was found in Ikizce-96 as 93.75% using 5 mg L-1 dicamba and 1 mg L-1 kinetin in induction medium. However, the most improved callus was observed in diploid barley Tokak as 179.95 mg in weight and 6.18 mm in diameter, respectively. The highest regeneration capacity was observed in the dose of 5 mg L-1 AGP in MS of all the genotypes and hexaploid wheat Ikizce-96 gave the best results with the highest regeneration capacity and culture effects (94.86 and 92.5%) in the same dose of AGE These results indicated that effective dose of AGP in regeneration medium increase plant regeneration in calli derived from cereal mature embryos.
文摘Objective:To develop the reproducible in vitro propagation protocols for the medicinally important plants viz.,Achyranthes aspera(A.aspera)L.and Achyranthes bidentata(A.bidentata)Blume using nodal segments as explants.Methods:Young shoots of A.aspera and A.bidentata were harvested and washed with running tap water and treated with 0.1%bavistin and rinsed twice with distilled water.Then the explants were surface sterilized with 0.1%(w/v)HgCl_2 solutions for I min.After rinsing with sterile distilled water for 3-4 times,nodal segments were cut into smaller segments(1 cm)and used as the explants.The explants were placed horizontally as well as vertically on solid basal Murashige and Skoog(MS)medium supplemented with 3%sucrose,0.6%(w/v)agar(HiMedia,Mumbai)and different concentration and combination of 6-benzyl amino purine(BAP),kinetin(Kin),naphthalene acetic acid(NAA)and indole acetic acid(IAA)for direct regeneration.Results:Adventitious proliferation was obtained from A.aspera and A.bidentata nodal segments inoculated on MS basal medium with 3%sucrose and augmented with BAP and Kin with varied frequency.MS medium augmented with 3.0 mg/L of BAP showed the highest percentage(93.60±0.71)of shootlets formation for A.aspera and(94.70±0.53)percentages for A.bidentata.Maximum number of shoots/explants(10.60±0.36)for A.aspera and(9.50±0.56)for A.bidentata was observed in MS medium fortified with 5.0 mg/L of BAP.For A.aspera,maximum mean length(5.50±0.34)of shootlets was obtained in MS medium augmented with 3.0 mg/L of Kin and for A.bidentata(5.40±0.61)was observed in the very same concentration.The highest percentage,maximum number of rootlets/shootlet and mean length of rootlets were observed in 1/2 MS medium supplemented with 1.0 mg/L of 1BA.Seventy percentages of plants were successfully established in polycups.Sixty eight percentages of plants were well established in the green house condition.Sixty five percentages of plants were established in the field.Conclusions:The results have shown that use of nodal buds is an alternative reproducible and dependable method for clonal propagation of A.aspera and A.bidentata.The high rate of direct shoot-root multiplication and their high rate of post-hardening survival indicate that this protocol can he easily adopted for commercial large scale cultivation.