Passive NO_(x) adsorbers(PNAs)were proposed to address the NO_(x) emissions during the cold start phase.Here we show a novel Ce-based BEA zeolite,as a noble-metal-free passive NO_(x)adsorber.The NO_(x) adsorption capa...Passive NO_(x) adsorbers(PNAs)were proposed to address the NO_(x) emissions during the cold start phase.Here we show a novel Ce-based BEA zeolite,as a noble-metal-free passive NO_(x)adsorber.The NO_(x) adsorption capacity of Ce/BEA reaches 36μmol/g in the feed gas close to realistic exhaust conditions,and the NO_(x) desorption temperature,which is around 290℃,is ideal for diesel exhaust after-treatment systems.Ce/BEA also behaves notable stability of high temperature CO exposure conditions.Multiple characterizations were performed to explore the NO_(x) adsorption chemistry of Ce/BEA.The Ce(Ⅳ)species in the BEA zeolite serves as the active center for NO_(x) adsorption.The bidentate nitrate species is responsible for the observed NO_(x) storage capacity,and the active oxygen around Ce(Ⅳ)plays a critical role in its formation.Considering the significantly better cost efficiency of Ce compared to Pd,Ce/BEA presents an enormous potential for the PNA applications and provides a novel formulation for the noblemetal choice of PNA materials.展开更多
基金supported by the National Key R&D Program of China(2021YFB3503200)the Major Science and Technology Programs of Yunnan Province(202002AB080001-1)。
文摘Passive NO_(x) adsorbers(PNAs)were proposed to address the NO_(x) emissions during the cold start phase.Here we show a novel Ce-based BEA zeolite,as a noble-metal-free passive NO_(x)adsorber.The NO_(x) adsorption capacity of Ce/BEA reaches 36μmol/g in the feed gas close to realistic exhaust conditions,and the NO_(x) desorption temperature,which is around 290℃,is ideal for diesel exhaust after-treatment systems.Ce/BEA also behaves notable stability of high temperature CO exposure conditions.Multiple characterizations were performed to explore the NO_(x) adsorption chemistry of Ce/BEA.The Ce(Ⅳ)species in the BEA zeolite serves as the active center for NO_(x) adsorption.The bidentate nitrate species is responsible for the observed NO_(x) storage capacity,and the active oxygen around Ce(Ⅳ)plays a critical role in its formation.Considering the significantly better cost efficiency of Ce compared to Pd,Ce/BEA presents an enormous potential for the PNA applications and provides a novel formulation for the noblemetal choice of PNA materials.
文摘针对基于智能手机的汽车无钥匙进入和启动系统(PEPS)车内外高精度辨识技术需求,设计基于双终端的差分K近邻定位算法.通过改进的Dempster-Shafer证据理论,将双终端算法与典型单终端算法的辨识结果进行融合,提升识别算法的鲁棒性与准确性.与传统的K近邻和概率分布法相比,融合算法在实验场景中对终端车内外状态的辨识准确率提升10%.在传统定位算法易出现误判的车窗附近范围内,将误差距离从距车窗20 cm缩小到距车窗5 cm.