This paper aims at solving the problems of low thermal collection rate,inconvenient maintenance,hindering indoor using during the application of passive solar technologies in rural houses in severe cold region.All the...This paper aims at solving the problems of low thermal collection rate,inconvenient maintenance,hindering indoor using during the application of passive solar technologies in rural houses in severe cold region.All these defects prevent the passive solar houses' further development. This paper chooses trombe wall,which has higher thermal efficiency of the passive solar house,as research object. The traditional vent is improved into a new type of ventilation device. This improvement overcomes the shortcoming,which traditional vent loses huge heat,and simplifies the construction of vent. Comparing with traditional trombe wall,the energy saving rate is 15. 69%.展开更多
This paper deals with the investigation of the principles of passive solar house design, passive solar systems, and techniques for solar house design. It is expected that the research is to be of momentous significanc...This paper deals with the investigation of the principles of passive solar house design, passive solar systems, and techniques for solar house design. It is expected that the research is to be of momentous significance to the design and construction of passive solar house, and may make contribution to the massive energy efficient housing construction in our country.展开更多
Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance fo...Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance for heating and cooling between passive houses in different climate zones.Therefore,this research develops a comparative analysis on the energy saving potential of passive houses with the conventional around China.A sensitivity analysis of thermal characteristics of building envelope(insulation of exterior walls and windows,and airtightness)on energy consumption is further carried out to improve the climate adaptability of passive house.Moreover,the variation of energy consumption under different heat gain intensity is also compared,to evaluate the effects of envelope thermal characteristics comprehensively.Results suggest that the decrease of exterior wall insulation leads to the greatest increase in energy consumption,especially in severe cold zone in China.However,the optimal insulation may change with the internal heat gain intensity,for instance,the decrease of insulation(from 0.4 to 1.0 W/(m^(2)·K))could reduce the energy consumption by 4.65 kW·h/(m^(2)·a)when the heat gain increases to 20 W/m^(2)for buildings in Hot Summer and Cold Winter zone in China.展开更多
The high impact of the building's sector on energy consumption and on the environment has led to increased concerns on the performance of indoor thermal buildings, and led many countries to define stricter requiremen...The high impact of the building's sector on energy consumption and on the environment has led to increased concerns on the performance of indoor thermal buildings, and led many countries to define stricter requirements for their building legislation. In 2010, the European Union has established that by the end of 2020 all new buildings must have energy consumption close to zero (NZEBs (nearly zero energy buildings)), increasing the pursue for more efficient building design. One way to achieve buildings with low energy consumption while maintaining a high thermal comfort is the passive house concept. The paper presents an architectural project designed to meet the Passive House requirements for the climate of southern Brazil. The energy balance was carried out using the energy balance toot-PHPP (passive house planning package), that verified the compliance of the prerequisites required for certification, which are related to the primary energy consumption, heating, cooling demand and overheating rate of the building.展开更多
With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design...With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design, such as the application of intelligent technology. With the increasingly severe environmental situation, people are increasingly demanding the environmental performance and green performance of buildings. The establishment of ultra-low energy consumption passive buildings has become one of the key construction contents of construction projects. This paper mainly analyzes the design points and architectural forms of related buildings from the perspective of intelligent control.展开更多
In this paper it is attempted to investigate the Leca blocks as sustainable construction material for the exterior walls of passive house. The building physical properties of Leca design wall structure are studied alo...In this paper it is attempted to investigate the Leca blocks as sustainable construction material for the exterior walls of passive house. The building physical properties of Leca design wall structure are studied along with the environmental impact and load-bearing capacity. To compare the results, a similar analysis is carried out considering the traditional wooden wall construction of passive houses. The results showed that Leca design wall structure can be an alternative sustainable solution to the traditional wooden wall structure of passive house, mainly due to its low U-value, its ability to handle moisture, and comparable structural load-bearing capacity. However, the wooden wall structure is more environmentally friendly than the Leca blocks due to its lower emissions to the environment and reduced energy use, especially during the manufacturing process.展开更多
<div style="text-align:justify;"> With rising health risks escalating from temperatures in the Global South, the shortage of essential indoor cooling is frequently seen as a dimension of energy poverty...<div style="text-align:justify;"> With rising health risks escalating from temperatures in the Global South, the shortage of essential indoor cooling is frequently seen as a dimension of energy poverty and human wellbeing. As a result, this study assessed ventilation and passive cooling in Jakande, Lagos Housing estate to design social housing that integrates proper cross ventilation and cooling. A total of 1215 housing units in the estate were used for the sampling frame. Based on the survey, the authors proposed an analytical housing design equipped with urban greenery that allows for free air movement with minimal thermal discomfort. The design methodology aids continuous cooling within the housing envelope and also improves aesthetics and landscaping within the environment. </div>展开更多
In China,a new "Design standard for energy efficiency of residential buildings (for cold region)" was introduced in 2006. In this new standard,more high level insulation of the building envelope is required,...In China,a new "Design standard for energy efficiency of residential buildings (for cold region)" was introduced in 2006. In this new standard,more high level insulation of the building envelope is required,yearly energy requirement for heating must be less than 55 kWh/(m2·a)(regarded as a low-energy house). The new attempt was carried out in the process of architecture design with an evaluation on energy consumption of the building. The design plan was brought forward and compared. PHPP software from German was applied to calculate energy consumption of the passive residential building. The optimum design planning was discussed and model of passive house suited to China's national conditions were attempted. The compactness,solar air collector and the window-wall ratio have essential influence on the energy consumption of buildings. The annual heat demands for the buildings with the window-wall ratio 0.35 and 0.50 are 48 kWh/(m2·a) and 46 kWh/(m2·a),respectively. The yearly auxiliary heat of building with the wall-mounted solar air collectors and the window-wall ratio 0.35 is just 4.8 kWh/(m2·a).展开更多
The objective of this paper is to design units with well-lighted environment and low-energy consumption in the apartment building. Their daylight and energy performance can be determined by the building shape and orie...The objective of this paper is to design units with well-lighted environment and low-energy consumption in the apartment building. Their daylight and energy performance can be determined by the building shape and orientation. The paper initially produced the results of illuminations and energy efficiency using the daylight and thermal simulations by Autodesk "ECOTECT". It then provided the comparison on simulation results of two type buildings: Flat-type and L-type apartment. The available options for the design incorporating the environmental performance have less flexibility in fiat-type apartments than in L-type ones. The best unit in the fiat apartment is fixed from -45 to 45 degrees rotation, however, that in the L-type one can change depending on rotating the building. Moreover, if the upper level units had the appropriate environment, the lower level could have larger window areas in order to meet those daylight performance needs. Results show that the facade design should have the different window areas depending on the location of each unit. It can assist in the comfort and low-energy consumption design by using simulation tools that achieve the more predictable understandings.展开更多
The financial viability of a solar STES (seasonal thermal energy store) installed in a mixed commercial and residential multiunit development of low-energy buildings located in Lysekil, Sweden, a maritime Scandinavi...The financial viability of a solar STES (seasonal thermal energy store) installed in a mixed commercial and residential multiunit development of low-energy buildings located in Lysekil, Sweden, a maritime Scandinavian Climate has been investigated. Using recorded figures for the installation costs and performance, a financial life cycle analysis has been undertaken to determine the cost effectiveness of the system. The time value of money is considered and an LCC (life cycle cost) analysis undertaken to identify the cost-effectiveness of the solution. It shows that while a direct heating and hot water system incorporating STES can be economically viable in a Swedish maritime climate in the long term, assistance such as that provided by government incentives is required to assist with the high capital cost of the initial investment.展开更多
基金Sponsored by the National Science-Technology Support Plan Projects (Grant No.2011BAJ08B06-2)
文摘This paper aims at solving the problems of low thermal collection rate,inconvenient maintenance,hindering indoor using during the application of passive solar technologies in rural houses in severe cold region.All these defects prevent the passive solar houses' further development. This paper chooses trombe wall,which has higher thermal efficiency of the passive solar house,as research object. The traditional vent is improved into a new type of ventilation device. This improvement overcomes the shortcoming,which traditional vent loses huge heat,and simplifies the construction of vent. Comparing with traditional trombe wall,the energy saving rate is 15. 69%.
文摘This paper deals with the investigation of the principles of passive solar house design, passive solar systems, and techniques for solar house design. It is expected that the research is to be of momentous significance to the design and construction of passive solar house, and may make contribution to the massive energy efficient housing construction in our country.
基金Project(51825802)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProject(2018YFE0106100)supported by the National Key R&D Program of China。
文摘Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance for heating and cooling between passive houses in different climate zones.Therefore,this research develops a comparative analysis on the energy saving potential of passive houses with the conventional around China.A sensitivity analysis of thermal characteristics of building envelope(insulation of exterior walls and windows,and airtightness)on energy consumption is further carried out to improve the climate adaptability of passive house.Moreover,the variation of energy consumption under different heat gain intensity is also compared,to evaluate the effects of envelope thermal characteristics comprehensively.Results suggest that the decrease of exterior wall insulation leads to the greatest increase in energy consumption,especially in severe cold zone in China.However,the optimal insulation may change with the internal heat gain intensity,for instance,the decrease of insulation(from 0.4 to 1.0 W/(m^(2)·K))could reduce the energy consumption by 4.65 kW·h/(m^(2)·a)when the heat gain increases to 20 W/m^(2)for buildings in Hot Summer and Cold Winter zone in China.
文摘The high impact of the building's sector on energy consumption and on the environment has led to increased concerns on the performance of indoor thermal buildings, and led many countries to define stricter requirements for their building legislation. In 2010, the European Union has established that by the end of 2020 all new buildings must have energy consumption close to zero (NZEBs (nearly zero energy buildings)), increasing the pursue for more efficient building design. One way to achieve buildings with low energy consumption while maintaining a high thermal comfort is the passive house concept. The paper presents an architectural project designed to meet the Passive House requirements for the climate of southern Brazil. The energy balance was carried out using the energy balance toot-PHPP (passive house planning package), that verified the compliance of the prerequisites required for certification, which are related to the primary energy consumption, heating, cooling demand and overheating rate of the building.
文摘With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design, such as the application of intelligent technology. With the increasingly severe environmental situation, people are increasingly demanding the environmental performance and green performance of buildings. The establishment of ultra-low energy consumption passive buildings has become one of the key construction contents of construction projects. This paper mainly analyzes the design points and architectural forms of related buildings from the perspective of intelligent control.
文摘In this paper it is attempted to investigate the Leca blocks as sustainable construction material for the exterior walls of passive house. The building physical properties of Leca design wall structure are studied along with the environmental impact and load-bearing capacity. To compare the results, a similar analysis is carried out considering the traditional wooden wall construction of passive houses. The results showed that Leca design wall structure can be an alternative sustainable solution to the traditional wooden wall structure of passive house, mainly due to its low U-value, its ability to handle moisture, and comparable structural load-bearing capacity. However, the wooden wall structure is more environmentally friendly than the Leca blocks due to its lower emissions to the environment and reduced energy use, especially during the manufacturing process.
文摘<div style="text-align:justify;"> With rising health risks escalating from temperatures in the Global South, the shortage of essential indoor cooling is frequently seen as a dimension of energy poverty and human wellbeing. As a result, this study assessed ventilation and passive cooling in Jakande, Lagos Housing estate to design social housing that integrates proper cross ventilation and cooling. A total of 1215 housing units in the estate were used for the sampling frame. Based on the survey, the authors proposed an analytical housing design equipped with urban greenery that allows for free air movement with minimal thermal discomfort. The design methodology aids continuous cooling within the housing envelope and also improves aesthetics and landscaping within the environment. </div>
基金Project(50778032) supported by the National Natural Science Foundation of ChinaProject(2006BAA04B04) supported by the National Science and Technology Pillar Program During 11th-Five-year Plan of ChinaProject(JN-200912) supported by Open Fund of Key Laboratory in Liaoning Province’s Universities,China
文摘In China,a new "Design standard for energy efficiency of residential buildings (for cold region)" was introduced in 2006. In this new standard,more high level insulation of the building envelope is required,yearly energy requirement for heating must be less than 55 kWh/(m2·a)(regarded as a low-energy house). The new attempt was carried out in the process of architecture design with an evaluation on energy consumption of the building. The design plan was brought forward and compared. PHPP software from German was applied to calculate energy consumption of the passive residential building. The optimum design planning was discussed and model of passive house suited to China's national conditions were attempted. The compactness,solar air collector and the window-wall ratio have essential influence on the energy consumption of buildings. The annual heat demands for the buildings with the window-wall ratio 0.35 and 0.50 are 48 kWh/(m2·a) and 46 kWh/(m2·a),respectively. The yearly auxiliary heat of building with the wall-mounted solar air collectors and the window-wall ratio 0.35 is just 4.8 kWh/(m2·a).
文摘The objective of this paper is to design units with well-lighted environment and low-energy consumption in the apartment building. Their daylight and energy performance can be determined by the building shape and orientation. The paper initially produced the results of illuminations and energy efficiency using the daylight and thermal simulations by Autodesk "ECOTECT". It then provided the comparison on simulation results of two type buildings: Flat-type and L-type apartment. The available options for the design incorporating the environmental performance have less flexibility in fiat-type apartments than in L-type ones. The best unit in the fiat apartment is fixed from -45 to 45 degrees rotation, however, that in the L-type one can change depending on rotating the building. Moreover, if the upper level units had the appropriate environment, the lower level could have larger window areas in order to meet those daylight performance needs. Results show that the facade design should have the different window areas depending on the location of each unit. It can assist in the comfort and low-energy consumption design by using simulation tools that achieve the more predictable understandings.
文摘The financial viability of a solar STES (seasonal thermal energy store) installed in a mixed commercial and residential multiunit development of low-energy buildings located in Lysekil, Sweden, a maritime Scandinavian Climate has been investigated. Using recorded figures for the installation costs and performance, a financial life cycle analysis has been undertaken to determine the cost effectiveness of the system. The time value of money is considered and an LCC (life cycle cost) analysis undertaken to identify the cost-effectiveness of the solution. It shows that while a direct heating and hot water system incorporating STES can be economically viable in a Swedish maritime climate in the long term, assistance such as that provided by government incentives is required to assist with the high capital cost of the initial investment.