Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo...Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.展开更多
Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these chal...Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these challenges,presenting various limitations that affect their operational or everyday usability.This article evaluates the performance of a dual-purpose passive ankle exoskeleton developed for the reduction of metabolic costs during walking,seeking to identify a force element that could be applied to the target population.Based on the 6-min walk test,twenty-nine subjects participated in the study using three different force elements.The results indicate that it is possible to reduce metabolic expenditure while using the developed exoskeleton.Additionally,the comfort and range of motion results verify the exoskeleton's suitability for use in uneven terrain and during extended periods.Nevertheless,the choice of the force element should be tailored to each user,and the control system should be adjustable to optimise the exoskeleton's performance.展开更多
Soils are not necessarily uniform and may present linearly varied or layered characteristics,for example the backfilled soils behind rigid retaining walls.In the presence of large lateral thrust imposed by arch bridge...Soils are not necessarily uniform and may present linearly varied or layered characteristics,for example the backfilled soils behind rigid retaining walls.In the presence of large lateral thrust imposed by arch bridge,passive soil failure is possible.A reliable prediction of passive earth pressure for the design of such wall is challenging in complicated soil strata,when adopting the conventional limit analysis method.In order to overcome the challenge for generating a kinematically admissible velocity field and a statically allowable stress field,finite element method is incorporated into limit analysis,forming finiteelement upper-bound(FEUB)and finite-element lower-bound(FELB)methods.Pseudo-static,original and modified pseudo-dynamic approaches are adopted to represent seismic acceleration inputs.After generating feasible velocity and stress fields within discretized elements based on specific criteria,FEUB and FELB formulations of seismic passive earth pressure(coefficient K_(P))can be derived from work rate balance equation and stress equilibrium.Resorting to an interior point algorithm,optimal upper and lower bound solutions are obtained.The proposed FEUB and FELB procedures are well validated by limit equilibrium as well as lower-bound and kinematic analyses.Parametric studies are carried out to investigate the effects of influential factors on seismic K_(P).Notably,true solution of K_(P) is well estimated based on less than 5%difference between FEUB and FELB solutions under such complex scenarios.展开更多
Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a sin...Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a single-satellite localization algorithm based on passive synthetic aper-ture(PSA)was introduced,enabling high-precision positioning.However,its estimation of azimuth and range distance is considerably affected by the residual frequency offset(RFO)of uncoopera-tive system transceivers.Furthermore,it requires data containing a satellite flying over the radia-tion source for RFO search.After estimating the RFO,an accurate estimation of azimuth and range distance can be carried out,which is difficult to achieve in practical situations.An LFM radar source passive localization algorithm based on range migration is proposed to address the dif-ficulty in estimating frequency offset.The algorithm first provides a rough estimate of the pulse repetition time(PRT).It processes intercepted signals through range compression,range interpola-tion,and polynomial fitting to obtain range migration observations.Subsequently,it uses the changing information of range migration and an accurate PRT to formulate a system of nonlinear equations,obtaining the emitter position and a more accurate PRT through a two-step localization algorithm.Frequency offset only induces a fixed offset in range migration,which does not affect the changing information.This algorithm can also achieve high-precision localization in squint scenar-ios.Finally,the effectiveness of this algorithm is verified through simulations.展开更多
Long-time integration technique is an effective way of improving target detection performance for unmanned aerial vehicle(UAV)in the passive bistatic radar(PBR),while range migration(RM)and Doppler frequency migration...Long-time integration technique is an effective way of improving target detection performance for unmanned aerial vehicle(UAV)in the passive bistatic radar(PBR),while range migration(RM)and Doppler frequency migration(DFM)may have a major effect due to the target maneuverability.This paper proposed an innovative long-time coherent integration approach,regarded as Continuous Radon-matched filtering process(CRMFP),for low-observable UAV target in passive bistatic radar.It not only mitigates the RM by collaborative research in range and velocity dimensions but also compensates the DFM and ensures the coherent integration through the matched filtering process(MFP).Numerical and real-life data following detailed analysis verify that the proposed method can overcome the Doppler mismatch influence and acquire comparable detection performance.展开更多
In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to...In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.展开更多
Building energy consumption and building carbon emissions both account for more than 20%of their total national values in China.Building employing phase change material(PCM)for passive temperature control shows a prom...Building energy consumption and building carbon emissions both account for more than 20%of their total national values in China.Building employing phase change material(PCM)for passive temperature control shows a promising prospect in meeting the comfort demand and reducing energy consumption simultaneously.However,there is a lack of more detailed research on the interaction between the location and thickness of PCM and indoor natural convection,as well as indoor temperature distribution.In this study,the numerical model of a passive temperature-controlled building integrating the developed PCM module is established with the help of ANSYS.In which,the actual weather condition of Beijing city is set as the boundary conditions and the indoor natural convection is simulated with the consideration of radiation model.The effects of PCM’s thickness and location on the internal temperature field are analyzed and discussed.The results show that the room could maintain within the human comfort temperature range with the longest ratio of 94.10%and the shortest ratio of 51.04%as integrating PCM.In comparison,the value is only 26.70%without PCM.The room’s maximum temperature fluctuation can also be improved;it could be lowered by 64.4%compared to the normal condition.When the quantity of PCM is sufficient,further increasing the PCM amount results in a temperature fluctuation reduction of less than 0.1°C and does not increase the comfort time.Placing PCM on the wall induces an apparent variation in indoor temperature along the vertical direction.Conversely,placing PCM on the roof can lead to a heat transfer rate difference of up to seven times.The optimal placement of PCM depends on the difference between the environmental and phase change temperatures.If the difference is positive,placing PCM on the roof is more effective;conversely,the opposite holds.According to the results over the entire cycle,PCM application on vertical walls yields better performance.The significant difference in natural convection caused by the same thickness of PCM but different application positions,coupled with the influence of air movement on the melting and solidification of PCM,further impacts indoor temperature fluctuations and comfort.This study can provide guidance for the application location and thickness of PCM,especially for scenarios where temperature regulation is required at a specific time.展开更多
Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small...Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.展开更多
Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink...Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink ISAC system that simultaneously serves multiple single-antenna communication users and senses multiple targets. Hybrid RIS differs from fully passive RIS in that it is composed of both active and passive elements, with the active elements having the effect of amplifying the signal in addition to phase-shifting. We maximize the achievable sum rate of communication users by collaboratively improving the beamforming matrix at the dual function base station(DFBS) and the phase-shifting matrix of the hybrid RIS, subject to the transmit power constraint at the DFBS, the signal-to-interference-plus-noise-ratio(SINR) constraint of the radar echo signal and the RIS constraint are satisfied at the same time. The builtin RIS-assisted ISAC design problem model is significantly non-convex due to the fractional objective function of this optimization problem and the coupling of the optimization variables in the objective function and constraints. As a result, we provide an effective alternating optimization approach based on fractional programming(FP) with block coordinate descent(BCD)to solve the optimization variables. Results from simulations show that the hybrid RIS-assisted ISAC system outperforms the other benchmark solutions.展开更多
The development of passive NO_(x)adsorbers with cost-benefit and high NO_(x)storage capacity remains an on-going challenge to after-treatment technologies at lower temperatures associated with cold-start NO_(x)emissio...The development of passive NO_(x)adsorbers with cost-benefit and high NO_(x)storage capacity remains an on-going challenge to after-treatment technologies at lower temperatures associated with cold-start NO_(x)emissions.Herein,Cs_(1)Mg_(3)Al catalyst prepared by sol-gel method was cyclic tested in NO_(x)storage under 5 vol%water.At 100°C,the NO_(x)storage capacity(1219 μmol g^(-1))was much higher than that of Pt/BaO/Al_(2)O_(3)(610 μmol g^(-1)).This provided new insights for non-noble metal catalysts in low-temperature passive NO_(x)adsorption.The addition of Cs improved the mobility of oxygen species and thus improved the NO_(x)storage capacity.The XRD,XPS,IR spectra and in situ DRIFTs with NH3 probe showed an interaction between CsO_(x)and AlO_(x)sites via oxygen species formed on Cs_(1)Mg_(3)Al catalyst.The improved mobility of oxygen species inferred from O2-TPD was consistent with high NO_(x)storage capacity related to enhanced formation of nitrate and additional nitrite species by NO_(x)oxidation.Moreover,the addition of Mg might improve the stability of Cs_(1)Mg_(3)Al by stabilizing surface active oxygen species in cyclic experiments.展开更多
In the criminological system, passive euthanasia is an act that meets the constitutive elements. We should discard the traditional view of distinguishing between acts and omissions, but use genuine consent or presumpt...In the criminological system, passive euthanasia is an act that meets the constitutive elements. We should discard the traditional view of distinguishing between acts and omissions, but use genuine consent or presumptive consent under the patient’s right to self-determination as the basis for its justification. In general, the patient’s genuine consent takes precedence, but in case of the unavail-ability of the patient’s genuine consent, his or her presumptive consent should be applied as a substitute. The judgment of presumptive con-sent should follow the subsequence, with the living will of the patient applied first and then the substitute decision-making. If the patient’s personal will cannot be inferred after exhausting all available possi-bilities, the principle of prioritizing the interests of life should prevail, and the ongoing life-sustaining medical care should not be interrupted or terminated.展开更多
The cost of acquisition of a passive house is a little higher than that of a conventional house.Proper design of a passive house should include not only thermal protection and stability of the construction,but it must...The cost of acquisition of a passive house is a little higher than that of a conventional house.Proper design of a passive house should include not only thermal protection and stability of the construction,but it must also take into account the price demands on each of the proposed structures and solution of details.The paper deals with the financial comparison of the traditional method of a foundation on the foundation strips of plain concrete and the modern method of founding a passive house as brick construction on the reinforced concrete slab base with a compact subsoil layer of thermal insulation in the form of granules of foamed glass.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
A cooperative passive sensing framework for millimeter wave(mmWave)communication systems is proposed and demonstrated in a scenario with one mobile signal blocker.Specifically,in the uplink communication with at least...A cooperative passive sensing framework for millimeter wave(mmWave)communication systems is proposed and demonstrated in a scenario with one mobile signal blocker.Specifically,in the uplink communication with at least two transmitters,a cooperative detection method is proposed for the receiver to track the blocker’s trajectory,localize the transmitters and detect the potential link blockage jointly.To facilitate detection,the receiver collects the signal of each transmitter along a line-of-sight(LoS)path and a non-line-of-sight(NLoS)path separately via two narrow-beam phased arrays.The NLoS path involves scattering at the mobile blocker,allowing its identification through the Doppler frequency.By comparing the received signals of both paths,the Doppler frequency and angle-of-arrival(AoA)of the NLoS path can be estimated.To resolve the blocker’s trajectory and the transmitters’locations,the receiver should continuously track the mobile blocker to accumulate sufficient numbers of the Doppler frequency and AoA versus time observations.Finally,a gradient-descent-based algorithm is proposed for joint detection.With the reconstructed trajectory,the potential link blockage can be predicted.It is demonstrated that the system can achieve decimeterlevel localization and trajectory estimation,and predict the blockage time with an error of less than 0.1 s.展开更多
The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the in...The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the influence of the gain bandwidth, saturation power, small-signal gain, and output coupler on PQS dynamics in passively mode-locked fiber lasers. The results show that the above four parameters can affect PQS dynamics. Pulsating PQSs occur as we alter the other three parameters when the gain bandwidth is 50 nm. Meanwhile, PQSs evolve from pulsating to erupting and then to splitting as the other three parameters are altered when the gain bandwidth is 10 nm, which can be attributed to the existence of the spectral filtering effect and intra-cavity fourth-order dispersion. These findings provide new insights into PQS dynamics in passively mode-locked fiber lasers.展开更多
Complicated tribological behavior occurs when human fingers touch and perceive the surfaces of objects.In this process,people use their exploration style with different conditions,such as contact load,sliding speed,sl...Complicated tribological behavior occurs when human fingers touch and perceive the surfaces of objects.In this process,people use their exploration style with different conditions,such as contact load,sliding speed,sliding direction,and angle of orientation between fingers and object surface consciously or unconsciously.This work addressed interlaboratory experimental devices for finger active and passive tactile friction analysis,showing two types of finger movement.In active sliding experiment,the participant slid their finger freely against the object surface,requiring the subject to control the motion conditions themselves.For passive sliding experiments,these motion conditions were adjusted by the device.Several analysis parameters,such as contact force,vibration acceleration signals,vibration magnitude,and fingerprint deformation were recorded simultaneously.Noticeable friction differences were observed when comparing active sliding and passive sliding.For passive sliding,stick-slip behavior occurred when sliding in the distal direction,evidenced by observing the friction force and the related deformation of the fingerprint ridges.The employed devices showed good repeatability and high reliability,which enriched the design of the experimental platform and provided guidance to the standardization research in the field of tactile friction.展开更多
The passive radiative cooling technology shows a great potential application on reducing the enormous global energy consumption.The multilayer metamaterials could enhance the radiative cooling performance.However,it i...The passive radiative cooling technology shows a great potential application on reducing the enormous global energy consumption.The multilayer metamaterials could enhance the radiative cooling performance.However,it is a challenge to design the radiative cooler.In this work,based on the particle swarm optimization(PSO)evolutionary algorithm,we develop an intelligent workflow in designing photonic radiative cooling metamaterials.Specifically,we design two 10-layer SiO_(2) radiative coolers doped by cylindrical MgF_(2) or air impurities,possessing high emissivity within the selective(8–13μm)and broadband(8–25μm)atmospheric transparency windows,respectively.Our two kinds of coolers demonstrate power density as high as 119 W/m^(2) and 132 W/m^(2) at the room temperature(300 K).Our scheme does not rely on the usage of special materials,forming high-performing metamaterials with conventional poor-performing components.This significant improvement of the emission spectra proves the effectiveness of our inverse design algorithm in boosting the discovery of high-performing functional metamaterials.展开更多
We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a...We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a diffusion equation with constant diffusion coefficient determined by velocity variance and molecular diffusion.Itssolution can be expressed in terms of the two-point,one time correlation of passive scalar,i.e.,R(r,0).Moreover,the decorrelation o R(k,τ),which is the Fourier transform of R(r,τ),is determined byR(k,0)and a diffusion kernal.展开更多
The steel lining of huge facilities is a significant structure,which experiences extreme environments and needs to be inspected periodically after manufacture.However,due to the complexity(crisscross welds,curved surf...The steel lining of huge facilities is a significant structure,which experiences extreme environments and needs to be inspected periodically after manufacture.However,due to the complexity(crisscross welds,curved surface,etc.)of their inside environments,high demands for stable adhesion and curvature adaptability are put forward.This paper presents a novel wheeled magnetic adhesion robot with passive suspension applied in nuclear power containment called NuBot,and mainly focuses on the following aspects:(1)proposing the wheeled locomotion suspension to adapt the robot to the uneven surface;(2)implementing the parameter optimization of NuBot.A comprehensive optimization model is established,and global optimal dimensions are properly chosen from performance atlases;(3)determining the normalization factor and actual dimensional parameters by constraints of the steel lining environment;(4)structure design of the overall robot and the magnetic wheels are completed.Experiments show that the robot can achieve precise locomotion on both strong and weak magnetic walls with various inclination angles,and can stably cross the 5 mm weld seam.Besides,its maximum payload capacity reaches 3.6 kg.Results show that the NuBot designed by the proposed systematic method has good comprehensive capabilities of surface-adaptability,adhesion stability,and payload.Besides,the robot can be applied in more ferromagnetic environments and the design method offers guidance for similar wheeled robots with passive suspension.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21808110,22078155,and 21878149).
文摘Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.
基金the Portuguese Army,through CINAMIL,within project ELITE2-Enhancement LITe ExoskeletonFoundation for Science and Technology (FCT),through IDMEC,under LAETA,project UIDB/50022/2020 for supporting this research。
文摘Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these challenges,presenting various limitations that affect their operational or everyday usability.This article evaluates the performance of a dual-purpose passive ankle exoskeleton developed for the reduction of metabolic costs during walking,seeking to identify a force element that could be applied to the target population.Based on the 6-min walk test,twenty-nine subjects participated in the study using three different force elements.The results indicate that it is possible to reduce metabolic expenditure while using the developed exoskeleton.Additionally,the comfort and range of motion results verify the exoskeleton's suitability for use in uneven terrain and during extended periods.Nevertheless,the choice of the force element should be tailored to each user,and the control system should be adjustable to optimise the exoskeleton's performance.
基金The research was financially supported by National Natural Science Foundation of China(Grant Nos.52108302 and 52009046)Fundamental Research Funds for the Central Universities of Hua-qiao University(Grant No.ZQN-914).
文摘Soils are not necessarily uniform and may present linearly varied or layered characteristics,for example the backfilled soils behind rigid retaining walls.In the presence of large lateral thrust imposed by arch bridge,passive soil failure is possible.A reliable prediction of passive earth pressure for the design of such wall is challenging in complicated soil strata,when adopting the conventional limit analysis method.In order to overcome the challenge for generating a kinematically admissible velocity field and a statically allowable stress field,finite element method is incorporated into limit analysis,forming finiteelement upper-bound(FEUB)and finite-element lower-bound(FELB)methods.Pseudo-static,original and modified pseudo-dynamic approaches are adopted to represent seismic acceleration inputs.After generating feasible velocity and stress fields within discretized elements based on specific criteria,FEUB and FELB formulations of seismic passive earth pressure(coefficient K_(P))can be derived from work rate balance equation and stress equilibrium.Resorting to an interior point algorithm,optimal upper and lower bound solutions are obtained.The proposed FEUB and FELB procedures are well validated by limit equilibrium as well as lower-bound and kinematic analyses.Parametric studies are carried out to investigate the effects of influential factors on seismic K_(P).Notably,true solution of K_(P) is well estimated based on less than 5%difference between FEUB and FELB solutions under such complex scenarios.
基金supported by the National Natural Science Foun-dation of China(No.62027801)。
文摘Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a single-satellite localization algorithm based on passive synthetic aper-ture(PSA)was introduced,enabling high-precision positioning.However,its estimation of azimuth and range distance is considerably affected by the residual frequency offset(RFO)of uncoopera-tive system transceivers.Furthermore,it requires data containing a satellite flying over the radia-tion source for RFO search.After estimating the RFO,an accurate estimation of azimuth and range distance can be carried out,which is difficult to achieve in practical situations.An LFM radar source passive localization algorithm based on range migration is proposed to address the dif-ficulty in estimating frequency offset.The algorithm first provides a rough estimate of the pulse repetition time(PRT).It processes intercepted signals through range compression,range interpola-tion,and polynomial fitting to obtain range migration observations.Subsequently,it uses the changing information of range migration and an accurate PRT to formulate a system of nonlinear equations,obtaining the emitter position and a more accurate PRT through a two-step localization algorithm.Frequency offset only induces a fixed offset in range migration,which does not affect the changing information.This algorithm can also achieve high-precision localization in squint scenar-ios.Finally,the effectiveness of this algorithm is verified through simulations.
基金supported by the National Natural Science Foundation of China (Nos.51975447,52275268)National Key Research and Development Program of China (No.2021YFC2203600)+2 种基金National Defense Basic Scientific Research Program of China (No.JCKY2021210B007)the Project about Building up“Scientists+Engineers”of Shaanxi Qinchuangyuan Platform (No.2022KXJ-030)Wuhu and Xidian University Special Fund for Industry University Research Cooperation (No.XWYCXY012021-012)。
文摘Long-time integration technique is an effective way of improving target detection performance for unmanned aerial vehicle(UAV)in the passive bistatic radar(PBR),while range migration(RM)and Doppler frequency migration(DFM)may have a major effect due to the target maneuverability.This paper proposed an innovative long-time coherent integration approach,regarded as Continuous Radon-matched filtering process(CRMFP),for low-observable UAV target in passive bistatic radar.It not only mitigates the RM by collaborative research in range and velocity dimensions but also compensates the DFM and ensures the coherent integration through the matched filtering process(MFP).Numerical and real-life data following detailed analysis verify that the proposed method can overcome the Doppler mismatch influence and acquire comparable detection performance.
基金supported by the National Natural Science Foundation of China(6193101562071335)+1 种基金the Technological Innovation Project of Hubei Province of China(2019AAA061)the Natural Science F oundation of Hubei Province of China(2021CFA002)。
文摘In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.
基金supported by National Innovation Talent Promotion Program(G2022013028L).
文摘Building energy consumption and building carbon emissions both account for more than 20%of their total national values in China.Building employing phase change material(PCM)for passive temperature control shows a promising prospect in meeting the comfort demand and reducing energy consumption simultaneously.However,there is a lack of more detailed research on the interaction between the location and thickness of PCM and indoor natural convection,as well as indoor temperature distribution.In this study,the numerical model of a passive temperature-controlled building integrating the developed PCM module is established with the help of ANSYS.In which,the actual weather condition of Beijing city is set as the boundary conditions and the indoor natural convection is simulated with the consideration of radiation model.The effects of PCM’s thickness and location on the internal temperature field are analyzed and discussed.The results show that the room could maintain within the human comfort temperature range with the longest ratio of 94.10%and the shortest ratio of 51.04%as integrating PCM.In comparison,the value is only 26.70%without PCM.The room’s maximum temperature fluctuation can also be improved;it could be lowered by 64.4%compared to the normal condition.When the quantity of PCM is sufficient,further increasing the PCM amount results in a temperature fluctuation reduction of less than 0.1°C and does not increase the comfort time.Placing PCM on the wall induces an apparent variation in indoor temperature along the vertical direction.Conversely,placing PCM on the roof can lead to a heat transfer rate difference of up to seven times.The optimal placement of PCM depends on the difference between the environmental and phase change temperatures.If the difference is positive,placing PCM on the roof is more effective;conversely,the opposite holds.According to the results over the entire cycle,PCM application on vertical walls yields better performance.The significant difference in natural convection caused by the same thickness of PCM but different application positions,coupled with the influence of air movement on the melting and solidification of PCM,further impacts indoor temperature fluctuations and comfort.This study can provide guidance for the application location and thickness of PCM,especially for scenarios where temperature regulation is required at a specific time.
文摘Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.
文摘Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink ISAC system that simultaneously serves multiple single-antenna communication users and senses multiple targets. Hybrid RIS differs from fully passive RIS in that it is composed of both active and passive elements, with the active elements having the effect of amplifying the signal in addition to phase-shifting. We maximize the achievable sum rate of communication users by collaboratively improving the beamforming matrix at the dual function base station(DFBS) and the phase-shifting matrix of the hybrid RIS, subject to the transmit power constraint at the DFBS, the signal-to-interference-plus-noise-ratio(SINR) constraint of the radar echo signal and the RIS constraint are satisfied at the same time. The builtin RIS-assisted ISAC design problem model is significantly non-convex due to the fractional objective function of this optimization problem and the coupling of the optimization variables in the objective function and constraints. As a result, we provide an effective alternating optimization approach based on fractional programming(FP) with block coordinate descent(BCD)to solve the optimization variables. Results from simulations show that the hybrid RIS-assisted ISAC system outperforms the other benchmark solutions.
基金supported by the National Natural Science Foundation of China(Grant No.51938014,Grant No.22176217,Grant No.22276215)the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China(No.22XNKJ28).
文摘The development of passive NO_(x)adsorbers with cost-benefit and high NO_(x)storage capacity remains an on-going challenge to after-treatment technologies at lower temperatures associated with cold-start NO_(x)emissions.Herein,Cs_(1)Mg_(3)Al catalyst prepared by sol-gel method was cyclic tested in NO_(x)storage under 5 vol%water.At 100°C,the NO_(x)storage capacity(1219 μmol g^(-1))was much higher than that of Pt/BaO/Al_(2)O_(3)(610 μmol g^(-1)).This provided new insights for non-noble metal catalysts in low-temperature passive NO_(x)adsorption.The addition of Cs improved the mobility of oxygen species and thus improved the NO_(x)storage capacity.The XRD,XPS,IR spectra and in situ DRIFTs with NH3 probe showed an interaction between CsO_(x)and AlO_(x)sites via oxygen species formed on Cs_(1)Mg_(3)Al catalyst.The improved mobility of oxygen species inferred from O2-TPD was consistent with high NO_(x)storage capacity related to enhanced formation of nitrate and additional nitrite species by NO_(x)oxidation.Moreover,the addition of Mg might improve the stability of Cs_(1)Mg_(3)Al by stabilizing surface active oxygen species in cyclic experiments.
基金the Beijing Social Science Foundation Project (Project Number 20221BS0009).
文摘In the criminological system, passive euthanasia is an act that meets the constitutive elements. We should discard the traditional view of distinguishing between acts and omissions, but use genuine consent or presumptive consent under the patient’s right to self-determination as the basis for its justification. In general, the patient’s genuine consent takes precedence, but in case of the unavail-ability of the patient’s genuine consent, his or her presumptive consent should be applied as a substitute. The judgment of presumptive con-sent should follow the subsequence, with the living will of the patient applied first and then the substitute decision-making. If the patient’s personal will cannot be inferred after exhausting all available possi-bilities, the principle of prioritizing the interests of life should prevail, and the ongoing life-sustaining medical care should not be interrupted or terminated.
文摘The cost of acquisition of a passive house is a little higher than that of a conventional house.Proper design of a passive house should include not only thermal protection and stability of the construction,but it must also take into account the price demands on each of the proposed structures and solution of details.The paper deals with the financial comparison of the traditional method of a foundation on the foundation strips of plain concrete and the modern method of founding a passive house as brick construction on the reinforced concrete slab base with a compact subsoil layer of thermal insulation in the form of granules of foamed glass.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
文摘A cooperative passive sensing framework for millimeter wave(mmWave)communication systems is proposed and demonstrated in a scenario with one mobile signal blocker.Specifically,in the uplink communication with at least two transmitters,a cooperative detection method is proposed for the receiver to track the blocker’s trajectory,localize the transmitters and detect the potential link blockage jointly.To facilitate detection,the receiver collects the signal of each transmitter along a line-of-sight(LoS)path and a non-line-of-sight(NLoS)path separately via two narrow-beam phased arrays.The NLoS path involves scattering at the mobile blocker,allowing its identification through the Doppler frequency.By comparing the received signals of both paths,the Doppler frequency and angle-of-arrival(AoA)of the NLoS path can be estimated.To resolve the blocker’s trajectory and the transmitters’locations,the receiver should continuously track the mobile blocker to accumulate sufficient numbers of the Doppler frequency and AoA versus time observations.Finally,a gradient-descent-based algorithm is proposed for joint detection.With the reconstructed trajectory,the potential link blockage can be predicted.It is demonstrated that the system can achieve decimeterlevel localization and trajectory estimation,and predict the blockage time with an error of less than 0.1 s.
基金the financial support from Science and Technology Project of the Jilin Provincial Department of Education (Grant No. JJKH20231171KJ)。
文摘The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the influence of the gain bandwidth, saturation power, small-signal gain, and output coupler on PQS dynamics in passively mode-locked fiber lasers. The results show that the above four parameters can affect PQS dynamics. Pulsating PQSs occur as we alter the other three parameters when the gain bandwidth is 50 nm. Meanwhile, PQSs evolve from pulsating to erupting and then to splitting as the other three parameters are altered when the gain bandwidth is 10 nm, which can be attributed to the existence of the spectral filtering effect and intra-cavity fourth-order dispersion. These findings provide new insights into PQS dynamics in passively mode-locked fiber lasers.
基金Supported by the China Scholarship Council (Grant No.201907000020)the 111 Project (Grant No.B20008)。
文摘Complicated tribological behavior occurs when human fingers touch and perceive the surfaces of objects.In this process,people use their exploration style with different conditions,such as contact load,sliding speed,sliding direction,and angle of orientation between fingers and object surface consciously or unconsciously.This work addressed interlaboratory experimental devices for finger active and passive tactile friction analysis,showing two types of finger movement.In active sliding experiment,the participant slid their finger freely against the object surface,requiring the subject to control the motion conditions themselves.For passive sliding experiments,these motion conditions were adjusted by the device.Several analysis parameters,such as contact force,vibration acceleration signals,vibration magnitude,and fingerprint deformation were recorded simultaneously.Noticeable friction differences were observed when comparing active sliding and passive sliding.For passive sliding,stick-slip behavior occurred when sliding in the distal direction,evidenced by observing the friction force and the related deformation of the fingerprint ridges.The employed devices showed good repeatability and high reliability,which enriched the design of the experimental platform and provided guidance to the standardization research in the field of tactile friction.
基金the National Natural Science Foundation of China(Grant No.11935010)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology。
文摘The passive radiative cooling technology shows a great potential application on reducing the enormous global energy consumption.The multilayer metamaterials could enhance the radiative cooling performance.However,it is a challenge to design the radiative cooler.In this work,based on the particle swarm optimization(PSO)evolutionary algorithm,we develop an intelligent workflow in designing photonic radiative cooling metamaterials.Specifically,we design two 10-layer SiO_(2) radiative coolers doped by cylindrical MgF_(2) or air impurities,possessing high emissivity within the selective(8–13μm)and broadband(8–25μm)atmospheric transparency windows,respectively.Our two kinds of coolers demonstrate power density as high as 119 W/m^(2) and 132 W/m^(2) at the room temperature(300 K).Our scheme does not rely on the usage of special materials,forming high-performing metamaterials with conventional poor-performing components.This significant improvement of the emission spectra proves the effectiveness of our inverse design algorithm in boosting the discovery of high-performing functional metamaterials.
基金supported by the National Natural Science Foun-dation of China(NSFC)Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.11988102).
文摘We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a diffusion equation with constant diffusion coefficient determined by velocity variance and molecular diffusion.Itssolution can be expressed in terms of the two-point,one time correlation of passive scalar,i.e.,R(r,0).Moreover,the decorrelation o R(k,τ),which is the Fourier transform of R(r,τ),is determined byR(k,0)and a diffusion kernal.
基金Supported by Shanghai Nuclear Star Nuclear Power Technology Co.,Ltd,National Natural Science Foundation of China(Grant No.51735009)State Key Lab of Mechanical System and Vibration Project(Grant No.MSVZD202008).
文摘The steel lining of huge facilities is a significant structure,which experiences extreme environments and needs to be inspected periodically after manufacture.However,due to the complexity(crisscross welds,curved surface,etc.)of their inside environments,high demands for stable adhesion and curvature adaptability are put forward.This paper presents a novel wheeled magnetic adhesion robot with passive suspension applied in nuclear power containment called NuBot,and mainly focuses on the following aspects:(1)proposing the wheeled locomotion suspension to adapt the robot to the uneven surface;(2)implementing the parameter optimization of NuBot.A comprehensive optimization model is established,and global optimal dimensions are properly chosen from performance atlases;(3)determining the normalization factor and actual dimensional parameters by constraints of the steel lining environment;(4)structure design of the overall robot and the magnetic wheels are completed.Experiments show that the robot can achieve precise locomotion on both strong and weak magnetic walls with various inclination angles,and can stably cross the 5 mm weld seam.Besides,its maximum payload capacity reaches 3.6 kg.Results show that the NuBot designed by the proposed systematic method has good comprehensive capabilities of surface-adaptability,adhesion stability,and payload.Besides,the robot can be applied in more ferromagnetic environments and the design method offers guidance for similar wheeled robots with passive suspension.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.