Objectives: To assess respiratory elastance and resistive properties in patients with autoimmune liver disorders using the passive relaxation expiration technique and compare findings to a group of patients with non-a...Objectives: To assess respiratory elastance and resistive properties in patients with autoimmune liver disorders using the passive relaxation expiration technique and compare findings to a group of patients with non-autoimmune liver disease and control subjects. These findings were then related to control of ventilation and gas exchange. A secondary objective was to assess respiratory muscle strength and gas exchange and their relation to respiratory mechanics. Methods: Measurements included respiratory elastance and resistance using the passive relaxation method. Pulmonary function, gas exchange and control of ventilation were assessed using standard methods. Results: a) Compared to control subjects, Ers in patients with liver disease was on average 50% greater than in controls;b) mean respiratory resistance, expressed as the respiratory constants, K<sub>1</sub> and K<sub>2</sub> in the Rohrer relationship, Pao/V’ = K<sub>1</sub> + K<sub>2</sub>V’, was not different from control resistance;c) mean maximal inspiratory and maximal expiratory pressures averaged 36% and 55% of their respective control values;d) inspiratory occlusion pressure in 0.1 sec (P<sub>0.1</sub>) was increased and negatively associated with FVC;and e) increases in P<sub>0.1</sub>, mean inspiratory flow (Vt/Ti) and presence of respiratory alkalosis confirmed the increase in ventilatory drive. Despite inspiratory muscle weakness in patients, P<sub>0.1</sub>/Pimax averaged 5-fold higher than in control subjects. Conclusions: Despite inspiratory muscle weakness and a V’<sub>E</sub> similar to that in normal subjects, central drive is increased in patients with chronic liver disease. The increase in ventilatory drive is related to smaller lung volumes and weakly associated with increase in respiratory elastance. Findings confirm that P<sub>0.1</sub> is a reliable measure of central drive and is an approach that can be used in the evaluation of control of ventilation in patients with chronic liver disease.展开更多
Human-robot interaction(HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator(SEA) provides inherent compliance, safety and fur...Human-robot interaction(HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator(SEA) provides inherent compliance, safety and further benefits for HRI, but the introduced elastic element also brings control difficulties. In this paper, we address the stiffness rendering problem for a cable-driven SEA system, to achieve either low stiffness for good transparency or high stiffness bigger than the physical spring constant, and to assess the rendering accuracy with quantified metrics. By taking a velocity-sourced model of the motor, a cascaded velocity-torque-impedance control structure is established. To achieve high fidelity torque control, the 2-DOF(degree of freedom) stabilizing control method together with a compensator has been used to handle the competing requirements on tracking performance, noise and disturbance rejection,and energy optimization in the cable-driven SEA system. The conventional passivity requirement for HRI usually leads to a conservative design of the impedance controller, and the rendered stiffness cannot go higher than the physical spring constant. By adding a phase-lead compensator into the impedance controller,the stiffness rendering capability was augmented with guaranteed relaxed passivity. Extensive simulations and experiments have been performed, and the virtual stiffness has been rendered in the extended range of 0.1 to 2.0 times of the physical spring constant with guaranteed relaxed passivity for physical humanrobot interaction below 5 Hz. Quantified metrics also verified good rendering accuracy.展开更多
文摘Objectives: To assess respiratory elastance and resistive properties in patients with autoimmune liver disorders using the passive relaxation expiration technique and compare findings to a group of patients with non-autoimmune liver disease and control subjects. These findings were then related to control of ventilation and gas exchange. A secondary objective was to assess respiratory muscle strength and gas exchange and their relation to respiratory mechanics. Methods: Measurements included respiratory elastance and resistance using the passive relaxation method. Pulmonary function, gas exchange and control of ventilation were assessed using standard methods. Results: a) Compared to control subjects, Ers in patients with liver disease was on average 50% greater than in controls;b) mean respiratory resistance, expressed as the respiratory constants, K<sub>1</sub> and K<sub>2</sub> in the Rohrer relationship, Pao/V’ = K<sub>1</sub> + K<sub>2</sub>V’, was not different from control resistance;c) mean maximal inspiratory and maximal expiratory pressures averaged 36% and 55% of their respective control values;d) inspiratory occlusion pressure in 0.1 sec (P<sub>0.1</sub>) was increased and negatively associated with FVC;and e) increases in P<sub>0.1</sub>, mean inspiratory flow (Vt/Ti) and presence of respiratory alkalosis confirmed the increase in ventilatory drive. Despite inspiratory muscle weakness in patients, P<sub>0.1</sub>/Pimax averaged 5-fold higher than in control subjects. Conclusions: Despite inspiratory muscle weakness and a V’<sub>E</sub> similar to that in normal subjects, central drive is increased in patients with chronic liver disease. The increase in ventilatory drive is related to smaller lung volumes and weakly associated with increase in respiratory elastance. Findings confirm that P<sub>0.1</sub> is a reliable measure of central drive and is an approach that can be used in the evaluation of control of ventilation in patients with chronic liver disease.
基金supported by the National Natural Science Foundation of China(61403215)the National Natural Science Foundation of Tianjin(13JCYBJC36600)the Fundamental Research Funds for the Central Universities
文摘Human-robot interaction(HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator(SEA) provides inherent compliance, safety and further benefits for HRI, but the introduced elastic element also brings control difficulties. In this paper, we address the stiffness rendering problem for a cable-driven SEA system, to achieve either low stiffness for good transparency or high stiffness bigger than the physical spring constant, and to assess the rendering accuracy with quantified metrics. By taking a velocity-sourced model of the motor, a cascaded velocity-torque-impedance control structure is established. To achieve high fidelity torque control, the 2-DOF(degree of freedom) stabilizing control method together with a compensator has been used to handle the competing requirements on tracking performance, noise and disturbance rejection,and energy optimization in the cable-driven SEA system. The conventional passivity requirement for HRI usually leads to a conservative design of the impedance controller, and the rendered stiffness cannot go higher than the physical spring constant. By adding a phase-lead compensator into the impedance controller,the stiffness rendering capability was augmented with guaranteed relaxed passivity. Extensive simulations and experiments have been performed, and the virtual stiffness has been rendered in the extended range of 0.1 to 2.0 times of the physical spring constant with guaranteed relaxed passivity for physical humanrobot interaction below 5 Hz. Quantified metrics also verified good rendering accuracy.