Modeling of seismic responses of variable permeability on the basis of the patchy-sa^ration model provides insights into the seismic characterization of fluid mobility. We linked rock-physics models in the frequency d...Modeling of seismic responses of variable permeability on the basis of the patchy-sa^ration model provides insights into the seismic characterization of fluid mobility. We linked rock-physics models in the frequency domain and seismic modeling on the basis of the propagator matrix method. For a layered patchy-saturated reservoir, the seismic responses represent a combination of factors, including impedance contrast, the effect of dispersion and attenuation within the reservoir, and the tuning and interference of reflections at the top and bottom of the reservoir. Numerical results suggest that increasing permeability significantly reduces the P-wave velocity and induces dispersion between the high- and low-frequency elastic limit. Velocity dispersion and the layered structure of a reservoir lead to complex reflection waveforms. Seismic reflections are sensitive to permeability if the impedance of the reservoir is close to that of the surroundings. For variable layer thickness, the stacked amplitudes increase with permeability for high-velocity surrounding shale, whereas the stacked amplitudes decrease with permeability for low-velocity surrounding shale.展开更多
In this work we interpret the data showing unusually strong velocity dispersion of P-waves (up to 30%) and attenuation in a relatively narrow frequency range. The cross-hole and VSP data were measured in a reservoir, ...In this work we interpret the data showing unusually strong velocity dispersion of P-waves (up to 30%) and attenuation in a relatively narrow frequency range. The cross-hole and VSP data were measured in a reservoir, which is in the porous zone of the Silurian Kankakee Limestone Formation formed by vertical fractures within a porous matrix saturated by oil, and gas patches. Such a medium exhibits significant attenuation due to wave-induced fluid flow across the interfaces between different types of inclusions (fractures, fluid patches) and background. Other models of intrinsic attenuation (in particular squirt flow models) cannot explain the amount of observed dispersion when using realistic rock properties. In order to interpret data in a satisfactory way we develop a superposition model for fractured porous rocks accounting also for the patchy saturation effect.展开更多
基金sponsored by the National Natural Science Foundation of China(Nos 41404090 and U1262208)the Foundation of the SINOPEC Key Laboratory of Geophysics(No.33550006-14-FW2099-0029)
文摘Modeling of seismic responses of variable permeability on the basis of the patchy-sa^ration model provides insights into the seismic characterization of fluid mobility. We linked rock-physics models in the frequency domain and seismic modeling on the basis of the propagator matrix method. For a layered patchy-saturated reservoir, the seismic responses represent a combination of factors, including impedance contrast, the effect of dispersion and attenuation within the reservoir, and the tuning and interference of reflections at the top and bottom of the reservoir. Numerical results suggest that increasing permeability significantly reduces the P-wave velocity and induces dispersion between the high- and low-frequency elastic limit. Velocity dispersion and the layered structure of a reservoir lead to complex reflection waveforms. Seismic reflections are sensitive to permeability if the impedance of the reservoir is close to that of the surroundings. For variable layer thickness, the stacked amplitudes increase with permeability for high-velocity surrounding shale, whereas the stacked amplitudes decrease with permeability for low-velocity surrounding shale.
基金supported by the Deutsche Forschungsgemeinschaft (Grant Nos. MU 1725/1-3 and MU 1725/2-1)the Consortium Project PHASE
文摘In this work we interpret the data showing unusually strong velocity dispersion of P-waves (up to 30%) and attenuation in a relatively narrow frequency range. The cross-hole and VSP data were measured in a reservoir, which is in the porous zone of the Silurian Kankakee Limestone Formation formed by vertical fractures within a porous matrix saturated by oil, and gas patches. Such a medium exhibits significant attenuation due to wave-induced fluid flow across the interfaces between different types of inclusions (fractures, fluid patches) and background. Other models of intrinsic attenuation (in particular squirt flow models) cannot explain the amount of observed dispersion when using realistic rock properties. In order to interpret data in a satisfactory way we develop a superposition model for fractured porous rocks accounting also for the patchy saturation effect.