Critical path tracing,a fault simulation method for gate-level combinational circuits,is extended to theparallel critical path tracing for functional block-level combinational circuits.If the word length of the hostco...Critical path tracing,a fault simulation method for gate-level combinational circuits,is extended to theparallel critical path tracing for functional block-level combinational circuits.If the word length of the hostcomputer is m,then the parallel critical path tracing will be approximately m times faster than the originalone.展开更多
Making use of the theory of continuous homotopy and the relation betweensymmetric polynomtal and polynomtal in one variable the arthors devoted ims article to constructing a regularly homotopic curve with probability ...Making use of the theory of continuous homotopy and the relation betweensymmetric polynomtal and polynomtal in one variable the arthors devoted ims article to constructing a regularly homotopic curve with probability one. Discrete tracingalong this honlotopic curve leads 10 a class of Durand-Kerner algorithm with stepparameters. The convergernce of this class of algorithms is given, which solves theconjecture about the global property of Durand-Kerner algorithm. The.problem forsteplength selection is thoroughly discussed Finally, sufficient numerical examples areused to verify our theory展开更多
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ...Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.展开更多
Highly scattering media,such as milk,skin,and clouds,are common in the real world.Rendering participating media is challenging,especially for highorder scattering dominant media,because the light may undergo a large n...Highly scattering media,such as milk,skin,and clouds,are common in the real world.Rendering participating media is challenging,especially for highorder scattering dominant media,because the light may undergo a large number of scattering events before leaving the surface.Monte Carlo-based methods typically require a long time to produce noise-free results.Based on the observation that low-albedo media contain less noise than high-albedo media,we propose reducing the variance of the rendered results using differentiable regularization.We first render an image with low-albedo participating media together with the gradient with respect to the albedo,and then predict the final rendered image with a low-albedo image and gradient image via a novel prediction function.To achieve high quality,we also consider the gradients of neighboring frames to provide a noise-free gradient image.Ultimately,our method can produce results with much less overall eror than equal-time path tracing methods.展开更多
In order to cope with the most expensive stem fault simulation in fault simu-lation field, several accelerated techniques are presented in this paper. These techniques include static analysis on circuit structure in p...In order to cope with the most expensive stem fault simulation in fault simu-lation field, several accelerated techniques are presented in this paper. These techniques include static analysis on circuit structure in preprocessing stage and dynamic calculations in fault simulation stage. With these techniques,the area for stem fault simulation and number of the stems requiring explicit fault simulation are greatly reduced, so that the entire fault simulation time is substantially decreased. Experimental results given in this paper show that the fault simulation algorithm using these techniques is of very high efficiency for both small and large numbers of test patterns. Especially with the increase of circuit gates, its effectivenbss improves obyiously.展开更多
基金The project is supported by the National Natural Science Foundation of China.
文摘Critical path tracing,a fault simulation method for gate-level combinational circuits,is extended to theparallel critical path tracing for functional block-level combinational circuits.If the word length of the hostcomputer is m,then the parallel critical path tracing will be approximately m times faster than the originalone.
文摘Making use of the theory of continuous homotopy and the relation betweensymmetric polynomtal and polynomtal in one variable the arthors devoted ims article to constructing a regularly homotopic curve with probability one. Discrete tracingalong this honlotopic curve leads 10 a class of Durand-Kerner algorithm with stepparameters. The convergernce of this class of algorithms is given, which solves theconjecture about the global property of Durand-Kerner algorithm. The.problem forsteplength selection is thoroughly discussed Finally, sufficient numerical examples areused to verify our theory
文摘Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
基金supported by the National Natural Science Foundation of China under Grant No.62172220。
文摘Highly scattering media,such as milk,skin,and clouds,are common in the real world.Rendering participating media is challenging,especially for highorder scattering dominant media,because the light may undergo a large number of scattering events before leaving the surface.Monte Carlo-based methods typically require a long time to produce noise-free results.Based on the observation that low-albedo media contain less noise than high-albedo media,we propose reducing the variance of the rendered results using differentiable regularization.We first render an image with low-albedo participating media together with the gradient with respect to the albedo,and then predict the final rendered image with a low-albedo image and gradient image via a novel prediction function.To achieve high quality,we also consider the gradients of neighboring frames to provide a noise-free gradient image.Ultimately,our method can produce results with much less overall eror than equal-time path tracing methods.
文摘In order to cope with the most expensive stem fault simulation in fault simu-lation field, several accelerated techniques are presented in this paper. These techniques include static analysis on circuit structure in preprocessing stage and dynamic calculations in fault simulation stage. With these techniques,the area for stem fault simulation and number of the stems requiring explicit fault simulation are greatly reduced, so that the entire fault simulation time is substantially decreased. Experimental results given in this paper show that the fault simulation algorithm using these techniques is of very high efficiency for both small and large numbers of test patterns. Especially with the increase of circuit gates, its effectivenbss improves obyiously.