A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifet...A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifetime.It takes the path loss exponent and the energy control coefficient into consideration with the aim to accentuate the minimum covering district of each node more accurately and precisely according to various network application scenarios.Besides,a self-healing scheme that enhances the robustness of the network was provided.It makes the topology tolerate more dead nodes than existing algorithms.Simulation was done under OMNeT++ platform and the results show that the LA-TPA strategy is more effective in constructing a well-performance network topology based on various application scenarios and can prolong the network lifetime significantly.展开更多
Long Range Wide Area Network (LoRaWAN) in the Internet ofThings (IoT) domain has been the subject of interest for researchers. Thereis an increasing demand to localize these IoT devices using LoRaWAN dueto the quickly...Long Range Wide Area Network (LoRaWAN) in the Internet ofThings (IoT) domain has been the subject of interest for researchers. Thereis an increasing demand to localize these IoT devices using LoRaWAN dueto the quickly growing number of IoT devices. LoRaWAN is well suited tosupport localization applications in IoTs due to its low power consumptionand long range. Multiple approaches have been proposed to solve the localizationproblem using LoRaWAN. The Expected Signal Power (ESP) basedtrilateration algorithm has the significant potential for localization becauseESP can identify the signal’s energy below the noise floor with no additionalhardware requirements and ease of implementation. This research articleoffers the technical evaluation of the trilateration technique, its efficiency,and its limitations for the localization using LoRa ESP in a large outdoorpopulated campus environment. Additionally, experimental evaluations areconducted to determine the effects of frequency hopping, outlier removal, andincreasing the number of gateways on localization accuracy. Results obtainedfrom the experiment show the importance of calculating the path loss exponentfor every frequency to circumvent the high localization error because ofthe frequency hopping, thus improving the localization performance withoutthe need of using only a single frequency.展开更多
基金Projects(61101104,61100213) supported by the National Natural Science Foundation of ChinaProject(NY211050) supported by Fund of Nanjing University of Posts and Telecommunications,China
文摘A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifetime.It takes the path loss exponent and the energy control coefficient into consideration with the aim to accentuate the minimum covering district of each node more accurately and precisely according to various network application scenarios.Besides,a self-healing scheme that enhances the robustness of the network was provided.It makes the topology tolerate more dead nodes than existing algorithms.Simulation was done under OMNeT++ platform and the results show that the LA-TPA strategy is more effective in constructing a well-performance network topology based on various application scenarios and can prolong the network lifetime significantly.
基金the ADEK Award for Research Excellence (AARE19-245)2019.
文摘Long Range Wide Area Network (LoRaWAN) in the Internet ofThings (IoT) domain has been the subject of interest for researchers. Thereis an increasing demand to localize these IoT devices using LoRaWAN dueto the quickly growing number of IoT devices. LoRaWAN is well suited tosupport localization applications in IoTs due to its low power consumptionand long range. Multiple approaches have been proposed to solve the localizationproblem using LoRaWAN. The Expected Signal Power (ESP) basedtrilateration algorithm has the significant potential for localization becauseESP can identify the signal’s energy below the noise floor with no additionalhardware requirements and ease of implementation. This research articleoffers the technical evaluation of the trilateration technique, its efficiency,and its limitations for the localization using LoRa ESP in a large outdoorpopulated campus environment. Additionally, experimental evaluations areconducted to determine the effects of frequency hopping, outlier removal, andincreasing the number of gateways on localization accuracy. Results obtainedfrom the experiment show the importance of calculating the path loss exponentfor every frequency to circumvent the high localization error because ofthe frequency hopping, thus improving the localization performance withoutthe need of using only a single frequency.