A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial...A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial potential field is constructed in Cartesian space, which provides the heuristic information, effective distance to the goal and the motion direction for the motion of the robot joints. Secondly, a genetic algorithm, combined with the heuristic rules, is used in joint space to determine a series of contiguous configurations piecewise from initial configuration until the goal configuration is attained. A simulation shows that the method can not only handle issues on path planning of the articulated robots in environment with complex obstacles, but also improve the efficiency and quality of path planning.展开更多
The wheeled or crawled robots often suffer from big obstacles or ditches, so a hopping robot needs to fit the tough landform in the field environments. In order to jump over obstacles rapidly, a jumping sequence must ...The wheeled or crawled robots often suffer from big obstacles or ditches, so a hopping robot needs to fit the tough landform in the field environments. In order to jump over obstacles rapidly, a jumping sequence must be generated based on the landform information from sensors or user input. The planning method for planar mobile robots is compared with that of hopping robots. Several factors can change the planning result. Adjusting these coefficients, a heuristic searching algorithm for the jumping sequence is developed on a simplified landform. Calculational result indicates that the algorithm can achieve safety and efficient control sequences for a desired goal.展开更多
文摘A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial potential field is constructed in Cartesian space, which provides the heuristic information, effective distance to the goal and the motion direction for the motion of the robot joints. Secondly, a genetic algorithm, combined with the heuristic rules, is used in joint space to determine a series of contiguous configurations piecewise from initial configuration until the goal configuration is attained. A simulation shows that the method can not only handle issues on path planning of the articulated robots in environment with complex obstacles, but also improve the efficiency and quality of path planning.
文摘The wheeled or crawled robots often suffer from big obstacles or ditches, so a hopping robot needs to fit the tough landform in the field environments. In order to jump over obstacles rapidly, a jumping sequence must be generated based on the landform information from sensors or user input. The planning method for planar mobile robots is compared with that of hopping robots. Several factors can change the planning result. Adjusting these coefficients, a heuristic searching algorithm for the jumping sequence is developed on a simplified landform. Calculational result indicates that the algorithm can achieve safety and efficient control sequences for a desired goal.