期刊文献+
共找到628篇文章
< 1 2 32 >
每页显示 20 50 100
Improved RRT^(∗)Algorithm for Automatic Charging Robot Obstacle Avoidance Path Planning in Complex Environments 被引量:1
1
作者 Chong Xu Hao Zhu +2 位作者 Haotian Zhu Jirong Wang Qinghai Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2567-2591,共25页
A new and improved RRT∗algorithm has been developed to address the low efficiency of obstacle avoidance planning and long path distances in the electric vehicle automatic charging robot arm.This algorithm enables the ... A new and improved RRT∗algorithm has been developed to address the low efficiency of obstacle avoidance planning and long path distances in the electric vehicle automatic charging robot arm.This algorithm enables the robot to avoid obstacles,find the optimal path,and complete automatic charging docking.It maintains the global completeness and path optimality of the RRT algorithmwhile also improving the iteration speed and quality of generated paths in both 2D and 3D path planning.After finding the optimal path,the B-sample curve is used to optimize the rough path to create a smoother and more optimal path.In comparison experiments,the new algorithmyielded reductions of 35.5%,29.2%,and 11.7%in search time and 22.8%,19.2%,and 9%in path length for the 3D environment.Finally,experimental validation of the automatic charging of electric vehicles was conducted to further verify the effectiveness of the algorithm.The simulation experimental validation was carried out by kinematic modeling and building an experimental platform.The error between the experimental results and the simulation results is within 10%.The experimental results show the effectiveness and practicality of the algorithm. 展开更多
关键词 path planning RRT∗ deep learning obstacle avoidance
下载PDF
Improved Dijkstra Algorithm for Mobile Robot Path Planning and Obstacle Avoidance 被引量:7
2
作者 Shaher Alshammrei Sahbi Boubaker Lioua Kolsi 《Computers, Materials & Continua》 SCIE EI 2022年第9期5939-5954,共16页
Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented prac... Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented practically based on an improved Dijkstra algorithm.To achieve this research objectives,first,the MR obstacle-free environment is modeled as a diagraph including nodes,edges and weights.Second,Dijkstra algorithm is used offline to generate the shortest path driving the MR from a starting point to a target point.During its movement,the robot should follow the previously obtained path and stop at each node to test if there is an obstacle between the current node and the immediately following node.For this aim,the MR was equipped with an ultrasonic sensor used as obstacle detector.If an obstacle is found,the MR updates its diagraph by excluding the corresponding node.Then,Dijkstra algorithm runs on the modified diagraph.This procedure is repeated until reaching the target point.To verify the efficiency of the proposed approach,a simulation was carried out on a hand-made MR and an environment including 9 nodes,19 edges and 2 obstacles.The obtained optimal path avoiding obstacles has been transferred into motion control and implemented practically using line tracking sensors.This study has shown that the improved Dijkstra algorithm can efficiently solve optimal path planning in environments including obstacles and that STEAM-based MRs are efficient cost-effective tools to practically implement the designed algorithm. 展开更多
关键词 Mobile robot(MR) STEAM path planning obstacle avoidance improved dijkstra algorithm
下载PDF
LSDA-APF:A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment
3
作者 Xiaoli Li Tongtong Jiao +2 位作者 Jinfeng Ma Dongxing Duan Shengbin Liang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期595-617,共23页
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ... In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account. 展开更多
关键词 Unmanned surface vehicles local obstacle avoidance algorithm artificial potential field algorithm path planning collision detection
下载PDF
Application of A* Algorithm for Real-time Path Re-planning of an Unmanned Surface Vehicle Avoiding Underwater Obstacles 被引量:8
4
作者 Thanapong Phanthong Toshihiro Maki +2 位作者 Tamaki Ura Takashi Sakamaki Pattara Aiyarak 《Journal of Marine Science and Application》 2014年第1期105-116,共12页
This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environment... This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV. 展开更多
关键词 UNDERWATER obstacle avoidance real-time pathre-planning A* ALGORITHM SONAR image unmanned surface vehicle
下载PDF
Survey on path and view planning for UAVs
5
作者 Xiaohui ZHOU Zimu YI +2 位作者 Yilin LIU Kai HUANG Hui HUANG 《Virtual Reality & Intelligent Hardware》 2020年第1期56-69,共14页
Background In recent decades,unmanned aerial vehicles(UAVs)have developed rapidly and been widely applied in many domains,including photography,reconstruction,monitoring,and search and rescue.In such applications,one ... Background In recent decades,unmanned aerial vehicles(UAVs)have developed rapidly and been widely applied in many domains,including photography,reconstruction,monitoring,and search and rescue.In such applications,one key issue is path and view planning,which tells UAVs exactly where to fly and how to search.Methods With specific consideration for three popular UAV applications(scene reconstruction,environment exploration,and aerial cinematography),we present a survey that should assist researchers in positioning and evaluating their works in the context of existing solutions.Results/Conclusions It should also help newcomers and practitioners in related fields quickly gain an overview of the vast literature.In addition to the current research status,we analyze and elaborate on advantages,disadvantages,and potential explorative trends for each application domain. 展开更多
关键词 Unmanned aerial vehicle path planning View panning Multi-view reconstruction Autonomous exploration Scene navigation obstacle avoidance Drone cinematography Camera control
下载PDF
Path planning in uncertain environment by using firefly algorithm 被引量:15
6
作者 B.K.Patle Anish Pandey +1 位作者 A.Jagadeesh D.R.Parhi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第6期691-701,共11页
Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mo... Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches. 展开更多
关键词 Mobile robot NAVIGATION FIREFLY algorithm path planning obstacle avoidance
下载PDF
Efficient AUV Path Planning in Time-Variant Underwater Environment Using Differential Evolution Algorithm 被引量:4
7
作者 S.Mahmoud Zadeh D.M.W Powers +2 位作者 A.M.Yazdani K.Sammut A.Atyabi 《Journal of Marine Science and Application》 CSCD 2018年第4期585-591,共7页
Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm ... Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner. 展开更多
关键词 path planning Differential evolution Autonomous UNDERWATER vehicles EVOLUTIONARY algorithms obstacle avoidance
下载PDF
Swarm intelligence based dynamic obstacle avoidance for mobile robots under unknown environment using WSN 被引量:4
8
作者 薛晗 马宏绪 《Journal of Central South University of Technology》 EI 2008年第6期860-868,共9页
To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathem... To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time. 展开更多
关键词 wireless sensor network dynamic obstacle avoidance mobile robot ant colony algorithm swarm intelligence path planning NAVIGATION
下载PDF
Global path guided vehicle obstacle avoidance path planning with artificial potential field method 被引量:2
9
作者 Yangde Chen Peiliang Wang +1 位作者 Zichen Lin Chenhao Sun 《IET Cyber-Systems and Robotics》 EI 2023年第1期24-35,共12页
An artificial potential field method based on global path guidance(G-APF)is proposed for target unreachability and local minima problems of the conventional artificial potential field(APF)method in complex environment... An artificial potential field method based on global path guidance(G-APF)is proposed for target unreachability and local minima problems of the conventional artificial potential field(APF)method in complex environments with dynamic obstacles.First,for the target unreachability problem,the global path attraction is added to the APF;second,an obstacle detection optimisation method is proposed and the optimal virtual target point is selected by setting the evaluation function to improve the local minima problem;finally,based on the obstacle detection optimisation method,the gravitational and repulsive processes are improved so that the path can pass through the narrow channel smoothly and remain collision-free.Experiments show that the method optimises 40.8%of the total path corners,reduces 81.8%of the number of path oscillations,and shortens 4.3%of the path length in Map 1.It can be applied to the vehicle obstacle avoidance path planning problem in complex environments with dynamic obstacles. 展开更多
关键词 automatic guided vehicles obstacle avoidance path planning
原文传递
Quadratic Programming-based Approach for Autonomous Vehicle Path Planning in Space
10
作者 CHEN Yang HAN Jianda WU Huaiyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期665-673,共9页
Path planning for space vehicles is still a challenging problem although considerable progress has been made over the past decades.The major difficulties are that most of existing methods only adapt to static environm... Path planning for space vehicles is still a challenging problem although considerable progress has been made over the past decades.The major difficulties are that most of existing methods only adapt to static environment instead of dynamic one,and also can not solve the inherent constraints arising from the robot body and the exterior environment.To address these difficulties,this research aims to provide a feasible trajectory based on quadratic programming(QP) for path planning in three-dimensional space where an autonomous vehicle is requested to pursue a target while avoiding static or dynamic obstacles.First,the objective function is derived from the pursuit task which is defined in terms of the relative distance to the target,as well as the angle between the velocity and the position in the relative velocity coordinates(RVCs).The optimization is in quadratic polynomial form according to QP formulation.Then,the avoidance task is modeled with linear constraints in RVCs.Some other constraints,such as kinematics,dynamics,and sensor range,are included.Last,simulations with typical multiple obstacles are carried out,including in static and dynamic environments and one of human-in-the-loop.The results indicate that the optimal trajectories of the autonomous robot in three-dimensional space satisfy the required performances.Therefore,the QP model proposed in this paper not only adapts to dynamic environment with uncertainty,but also can satisfy all kinds of constraints,and it provides an efficient approach to solve the problems of path planning in three-dimensional space. 展开更多
关键词 path planning in three-dimensional space obstacle avoidance target pursuit relative velocity coordinates quadratic programming
下载PDF
Local Path Planning Method of the Self-propelled Model Based on Reinforcement Learning in Complex Conditions
11
作者 Yi Yang Yongjie Pang +1 位作者 Hongwei Li Rubo Zhang 《Journal of Marine Science and Application》 2014年第3期333-339,共7页
Conducting hydrodynamic and physical motion simulation tests using a large-scale self-propelled model under actual wave conditions is an important means for researching environmental adaptability of ships. During the ... Conducting hydrodynamic and physical motion simulation tests using a large-scale self-propelled model under actual wave conditions is an important means for researching environmental adaptability of ships. During the navigation test of the self-propelled model, the complex environment including various port facilities, navigation facilities, and the ships nearby must be considered carefully, because in this dense environment the impact of sea waves and winds on the model is particularly significant. In order to improve the security of the self-propelled model, this paper introduces the Q learning based on reinforcement learning combined with chaotic ideas for the model's collision avoidance, in order to improve the reliability of the local path planning. Simulation and sea test results show that this algorithm is a better solution for collision avoidance of the self navigation model under the interference of sea winds and waves with good adaptability. 展开更多
关键词 self-propelled model local path planning Q learning obstacle avoidance reinforcement learning
下载PDF
Researches On The Robot Obstacle Avoidance Based On Fuzzy Control
12
作者 Jin Yao 《International Journal of Technology Management》 2014年第7期62-63,共2页
With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ab... With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ability of the robot to complete the task is also valued and widely used.In this paper, the whole covered area of the local path planning uses a fuzzy control algorithm,which uses the robustness and an action of perception based on the biological behavior of the fuzzy control algorithm combined with itself.For obstacle avoidance system of mobile robots,we put forward the avoidance strategy of fully contacting the obstacles.And we have conducted a deep study about the theory and implementation methods. 展开更多
关键词 Mobile robot full area coverage path planning obstacle avoidance
下载PDF
基于优化快速搜索随机树算法的全局路径规划 被引量:2
13
作者 杨炜 谭亮 +2 位作者 孙雪 杜亚峰 周晓冰 《汽车技术》 CSCD 北大核心 2024年第3期31-36,共6页
为了改善传统快速搜索随机树(RRT)算法在全局路径规划中存在的平滑度差、具有潜在碰撞性等问题,提出了一种双重优化的RRT算法。在传统RRT算法基础上,引入自适应目标偏向策略以缩短采样时间,引入角度约束采样策略以适应车辆极限转角。得... 为了改善传统快速搜索随机树(RRT)算法在全局路径规划中存在的平滑度差、具有潜在碰撞性等问题,提出了一种双重优化的RRT算法。在传统RRT算法基础上,引入自适应目标偏向策略以缩短采样时间,引入角度约束采样策略以适应车辆极限转角。得到初始路径后,建立二项优化函数(即降低路径曲率和远离障碍物),并将其作为基点进行梯度下降二次优化,生成可供车辆行驶、平滑性良好且碰撞概率低的路径,并进行仿真验证。结果表明:优化RRT算法相比于传统RRT算法、RRT-Connect算法和RRT算法,平均曲率分别降低了38.1%、36.4%和24.7%,曲率均方差分别降低了38.4%、38.4%和27.2%。 展开更多
关键词 快速搜索随机树 全局路径规划 避障 梯度下降法
下载PDF
无人驾驶农机避障路径跟踪仿真与验证 被引量:1
14
作者 汪沛 曾思晓 何杰 《华南农业大学学报》 CAS CSCD 北大核心 2024年第3期416-426,共11页
【目的】为便于验证无人驾驶农机避障路径跟踪的效果,减少实际无人农机试验次数与消耗,设计一种无人驾驶农机避障路径跟踪仿真验证方法,构建一个仿真验证应用系统。【方法】以无人农机为基础,集成真实复杂地形环境仿真、实际作业农机仿... 【目的】为便于验证无人驾驶农机避障路径跟踪的效果,减少实际无人农机试验次数与消耗,设计一种无人驾驶农机避障路径跟踪仿真验证方法,构建一个仿真验证应用系统。【方法】以无人农机为基础,集成真实复杂地形环境仿真、实际作业农机仿真和路径规划算法植入,构建一个一体化仿真验证应用系统。基于三维SLAM技术,采集环境点云数据,实现农田地形环境仿真建模,构建阿克曼转向机械结构的农机仿真建模,提出一种基于农机动力学约束的TEB局部路径规划算法;在仿真验证应用系统中实现路径规划跟踪及避障,并通过多次测试验证该算法的有效性。【结果】避障路径跟踪有效性对比测试和避障路径跟踪平顺性验证测试结果表明,无人农机行驶过程中可有效动态避障,最短有效避障距离为4.1 m。路径跟踪控制效果良好,障碍物距离大于5.0 m时,可控平均误差≤0.4305 m,均方根误差≤0.3151 m;障碍物距离在4.5~5.0 m时,可控误差均值≤1.3538 m,均方根误差≤1.6126 m。【结论】本文提出的改进TEB算法具有较强的作业能力以及较高的作业精度,满足农业机械导航避障路径跟踪仿真验证的需求,该算法可应用于无人农机在实际农田环境的避障路径跟踪。该应用系统易于扩充,为精准农业中针对各种复杂作业环境的农机运作状态的优化设计研究提供基础。 展开更多
关键词 无人驾驶农机 路径跟踪 仿真建模 机器人操作系统 避障 路径规划
下载PDF
AGV路径规划及避障算法研究综述 被引量:1
15
作者 赵学健 叶昊 +1 位作者 贾伟 孙知信 《小型微型计算机系统》 CSCD 北大核心 2024年第3期529-541,共13页
自动导向车(Automated Guided Vehicle,AGV)目前被广泛应用于物流、仓储、制造业和仓储等领域.AGV的路径规划和避障算法是实现AGV自主导航的关键技术,决定了AGV在复杂环境中能否高效、安全地完成任务,近年来成为AGV领域的重要研究热点之... 自动导向车(Automated Guided Vehicle,AGV)目前被广泛应用于物流、仓储、制造业和仓储等领域.AGV的路径规划和避障算法是实现AGV自主导航的关键技术,决定了AGV在复杂环境中能否高效、安全地完成任务,近年来成为AGV领域的重要研究热点之一.本文根据AGV路径规划及避障算法的原理与特点,将主流AGV路径规划及避障算法划分为局部避障路径规划算法、基于几何模型的路径规划算法、智能路径规划算法和混合算法4类,对算法的原理、工作流程、优缺点进行了深入分析,并介绍了相应的改进算法.最后,本文对AGV路径规划及避障的未来发展趋势进行展望,为AGV路径规划及避障算法的研究指出了方向. 展开更多
关键词 AGV 路径规划 避障算法 物流
下载PDF
采摘机器人的路径规划系统动态性优化研究 被引量:1
16
作者 李玉霞 王辉 《农机化研究》 北大核心 2024年第2期55-59,共5页
为进一步改善采摘机器人的工作性能,提出以动态调控为主导的理念,针对整机的路径规划系统展开优化研究。以当前果园采摘机器人的通用性结构组成为前提,将云平台数据处理与路径规划核心算法有效融合后搭建动态控制模型,分别针对路径规划... 为进一步改善采摘机器人的工作性能,提出以动态调控为主导的理念,针对整机的路径规划系统展开优化研究。以当前果园采摘机器人的通用性结构组成为前提,将云平台数据处理与路径规划核心算法有效融合后搭建动态控制模型,分别针对路径规划系统的硬件配置与软件控制进行合理设计,得到可应用于采摘实践且布局完整的路径规划系统。展开动态性优化下的采摘作业试验,结果表明:优化后采摘机器人路径规划系统的整体路径搜索率与路径平滑性得到明显提升,相对提升度分别为10.93%和9.71%,路径偏离率相对降低了50%左右,很好地优化了机器人的避障能力,满足系统稳定性需求,具有较高的实用价值。 展开更多
关键词 采摘机器人 路径规划 动态控制 路径搜索率 避障
下载PDF
约束空间工业机器人姿态搜索及避障研究
17
作者 赵海文 罗元铭 +3 位作者 张雅丽 赵悦焜 杨冬 胡宁 《组合机床与自动化加工技术》 北大核心 2024年第5期77-81,共5页
为解决约束空间下机器人无碰撞目标姿态求解问题,提出一种机器人姿态快速搜索算法,并结合4种不同的路径规划算法实现工业机器人的多目标路径规划。首先,对机器人运动框架初步配置完成后,通过计算位姿矩阵得到了场景内物体坐标的动态相... 为解决约束空间下机器人无碰撞目标姿态求解问题,提出一种机器人姿态快速搜索算法,并结合4种不同的路径规划算法实现工业机器人的多目标路径规划。首先,对机器人运动框架初步配置完成后,通过计算位姿矩阵得到了场景内物体坐标的动态相对关系,并在ROS中搭建规划场景;其次,提出一种基于模型和机器人逆解的机器人姿态快速搜索算法RFP,并在RoboDK中对其进行验证,验证结果表明该算法有效;最后,根据任务需求设计了路径规划流程并引入二次规划减少算法随机性的影响,提高规划成功率,应用了RRT等算法进行对比分析,仿真结果表明RRT-connect算法的规划速度与成功率高于其它算法,为样机的实现奠定了基础。 展开更多
关键词 工业机器人 路径规划 避障 约束空间 姿态搜索 ROS
下载PDF
融合改进A^(*)算法和动态窗口法的自动驾驶路径规划
18
作者 刘西 程正钱 +2 位作者 胡远志 颜伏伍 王戡 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第6期81-91,共11页
针对自动驾驶汽车路径规划全局最优、耗时最优和避障的需求,提出一种改进A^(*)算法和动态窗口法的融合算法。A^(*)算法主要从启发函数、权重系数、搜索邻域和搜索策略4个方面进行改进,动态窗口法主要改进评价函数。利用改进后的A^(*)算... 针对自动驾驶汽车路径规划全局最优、耗时最优和避障的需求,提出一种改进A^(*)算法和动态窗口法的融合算法。A^(*)算法主要从启发函数、权重系数、搜索邻域和搜索策略4个方面进行改进,动态窗口法主要改进评价函数。利用改进后的A^(*)算法和双向A^(*)算法完成栅格地图上的全局路径规划,去除冗余节点并平滑处理优化全局路径,利用融合动态窗口算法进行局部路径规划,完成避障。与传统的A^(*)算法相比,改进的A^(*)算法和双向A^(*)算法搜索全局路径耗时和节点显著减少,优化的A^(*)算法与动态窗口法的融合算法具有更高的效率、更好的路径规划能力和避障能力。 展开更多
关键词 A^(*)算法 路径规划 平滑处理 动态窗口算法 避障
下载PDF
改进Q-Learning的路径规划算法研究
19
作者 宋丽君 周紫瑜 +2 位作者 李云龙 侯佳杰 何星 《小型微型计算机系统》 CSCD 北大核心 2024年第4期823-829,共7页
针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在... 针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在更新函数中设计深度学习因子以保证算法探索概率;融合遗传算法,避免陷入局部路径最优同时按阶段探索最优迭代步长次数,以减少动态地图探索重复率;最后提取输出的最优路径关键节点采用贝塞尔曲线进行平滑处理,进一步保证路径平滑度和可行性.实验通过栅格法构建地图,对比实验结果表明,改进后的算法效率相较于传统算法在迭代次数和路径上均有较大优化,且能够较好的实现动态地图下的路径规划,进一步验证所提方法的有效性和实用性. 展开更多
关键词 移动机器人 路径规划 Q-Learning算法 平滑处理 动态避障
下载PDF
近海复杂环境下UUV动态路径规划方法研究
20
作者 张宏瀚 王亚博 +2 位作者 李娟 王元慧 严浙平 《智能系统学报》 CSCD 北大核心 2024年第1期114-121,共8页
为解决近海环境下水下无人航行器(unmanned underwater vehicle,UUV)的动态路径规划问题,本文提出一种结合全局和局部动态路径规划的算法。首先,本文提出一种基于自适应目标引导的快速拓展随机树算法,以增加随机树生长的方向性,并通过... 为解决近海环境下水下无人航行器(unmanned underwater vehicle,UUV)的动态路径规划问题,本文提出一种结合全局和局部动态路径规划的算法。首先,本文提出一种基于自适应目标引导的快速拓展随机树算法,以增加随机树生长的方向性,并通过转向和重选策略减少无效拓展加快算法的收敛速度。接着,获得全局路径之后使用自适应子节点选取策略获取动态窗口法的子目标点,将复杂的全局动态任务规划分解为多个简单的动态路劲规划,从而防止动态窗口法陷入局部极小值。最后,通过UUV出港任务仿真实验验证了算法的有效性和实用性。 展开更多
关键词 水下无人航行器 动态路径规划 快速拓展随机树 动态窗口 自适应 水下环境 局部路径规划 避障
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部