Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc...Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.展开更多
This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking s...This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper.展开更多
A fuzzy robust path tracking strategy of an active pelagic trawl system with ship and winch regulation is proposed.First,nonlinear mathematic model of the pelagic trawl system was derived using Lagrange equation and f...A fuzzy robust path tracking strategy of an active pelagic trawl system with ship and winch regulation is proposed.First,nonlinear mathematic model of the pelagic trawl system was derived using Lagrange equation and further simplified as a low order model for the convenience of controller design.Then,an active path tracking strategy of pelagic trawl system was investigated to improve the catching efficiency of the target fish near the sea bottom.By means of the active tracking control,the pelagic trawl net can be positioned dynamically to follow a specified trajectory via the coordinated winch and ship regulation.In addition,considering the system nonlinearities,modeling uncertainties and the unknown exogenous disturbance of the trawl system model,a nonlinear robust H2 /H∞ controller based on Takagi-Sugeno(T-S) fuzzy model was presented,and the simulation comparison with linear robust H2 /H∞ controller and PID method was conducted for the validation of the nonlinear fuzzy robust controller.The nonlinear simulation results show that the average tracking error is 0.4 m for the fuzzy robust H2 /H∞ control and 125.8 m for the vertical and horizontal displacement,respectively,which is much smaller than linear H2 /H∞ controller and the PID controller.The investigation results illustrate that the fuzzy robust controller is effective for the active path tracking control of the pelagic trawl system.展开更多
基金Supported by National Key R&D Program of China (Grant No.2021YFB2501800)National Natural Science Foundation of China (Grant No.52172384)+1 种基金Science and Technology Innovation Program of Hunan Province of China (Grant No.2021RC3048)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle of China (Grant No.72275004)。
文摘Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
基金supported by the National Natural Science Foundation of China(62173029,62273033,U20A20225)the Fundamental Research Funds for the Central Universities,China(FRF-BD-19-002A)。
文摘This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper.
基金Project(2009AA045004)supported by the Hi-tech Research and Development Program of China
文摘A fuzzy robust path tracking strategy of an active pelagic trawl system with ship and winch regulation is proposed.First,nonlinear mathematic model of the pelagic trawl system was derived using Lagrange equation and further simplified as a low order model for the convenience of controller design.Then,an active path tracking strategy of pelagic trawl system was investigated to improve the catching efficiency of the target fish near the sea bottom.By means of the active tracking control,the pelagic trawl net can be positioned dynamically to follow a specified trajectory via the coordinated winch and ship regulation.In addition,considering the system nonlinearities,modeling uncertainties and the unknown exogenous disturbance of the trawl system model,a nonlinear robust H2 /H∞ controller based on Takagi-Sugeno(T-S) fuzzy model was presented,and the simulation comparison with linear robust H2 /H∞ controller and PID method was conducted for the validation of the nonlinear fuzzy robust controller.The nonlinear simulation results show that the average tracking error is 0.4 m for the fuzzy robust H2 /H∞ control and 125.8 m for the vertical and horizontal displacement,respectively,which is much smaller than linear H2 /H∞ controller and the PID controller.The investigation results illustrate that the fuzzy robust controller is effective for the active path tracking control of the pelagic trawl system.