This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
Background:Individual tree extraction from terrestrial laser scanning(TLS)data is a prerequisite for tree-scale estimations of forest biophysical properties.This task currently is undertaken through laborious and time...Background:Individual tree extraction from terrestrial laser scanning(TLS)data is a prerequisite for tree-scale estimations of forest biophysical properties.This task currently is undertaken through laborious and time-consuming manual assistance and quality control.This study presents a new fully automatic approach to extract single trees from large-area TLS data.This data-driven method operates exclusively on a point cloud graph by path finding,which makes our method computationally efficient and universally applicable to data from various forest types.Results:We demonstrated the proposed method on two openly available datasets.First,we achieved state-of-the-art performance on locating single trees on a benchmark dataset by significantly improving the mean accuracy by over 10% especially for difficult forest plots.Second,we successfully extracted 270 trees from one hectare temperate forest.Quantitative validation resulted in a mean Intersection over Union(mIoU)of 0.82 for single crown segmentation,which further led to a relative root mean square error(RMSE%)of 21.2% and 23.5% for crown area and tree volume estimations,respectively.Conclusions:Our method allows automated access to individual tree level information from TLS point clouds.The proposed method is free from restricted assumptions of forest types.It is also computationally efficient with an average processing time of several seconds for one million points.It is expected and hoped that our method would contribute to TLS-enabled wide-area forest qualifications,ranging from stand volume and carbon stocks modelling to derivation of tree functional traits as part of the global ecosystem understanding.展开更多
Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles.In this paper,we propose a novel path pl...Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles.In this paper,we propose a novel path planning algorithm-Intermediary RRT*-PSO-by utilizing the exploring speed advantages of Rapidly exploring Random Trees and using its solution to feed to a metaheuristic-based optimizer,Particle swarm optimization(PSO),for fine-tuning and enhancement.In Phase 1,the start and goal trees are initialized at the starting and goal positions,respectively,and the intermediary tree is initialized at a random unexplored region of the search space.The trees were grown until one met the other and then merged and re-initialized in other unexplored regions.If the start and goal trees merge,the first solution is found and passed through a minimization process to reduce unnecessary nodes.Phase 2 begins by feeding the minimized solution from Phase 1 as the global best particle of PSO to optimize the path.After simulating two special benchmark configurations and six practice configurations with special cases,the results of the study concluded that the proposed method is capable of handling small to large,simple to complex continuous environments,whereas it was very tedious for the previous method to achieve.展开更多
由于果蔬采摘环境的不确定性和复杂性,机械臂在复杂环境中完成采摘,其路径规划需考虑实时避障。为实现采摘机械臂在不确定环境下安全采摘,提出一种改进RRT的动态避障算法,以提升机械臂在不确定采摘环境的适应性。针对基本快速扩展随机...由于果蔬采摘环境的不确定性和复杂性,机械臂在复杂环境中完成采摘,其路径规划需考虑实时避障。为实现采摘机械臂在不确定环境下安全采摘,提出一种改进RRT的动态避障算法,以提升机械臂在不确定采摘环境的适应性。针对基本快速扩展随机树算法(Rapidly-exploring Random Trees,RRT)在动态环境下迭代时间长、路径长、适应性差等问题,在RRT算法的基础上,引入目标导向策略,把终点以一定概率作为随机采样点的采样方向,提高算法的迭代效率;引入动态检测机制,对已完成规划的初始路径进行实时检测,使算法适应动态变化的环境。通过仿真分析改进RRT算法,结果表明:改进RRT算法的路径减少16%,迭代时间缩短86.5%;同时,动态检测机制使算法适应动态环境。展开更多
针对RRT(rapidly-exploring random tree)路径规划算法在高维空间的机械臂避障路径规划时随机产生巨量节点,导致算法运行负担大、避障性能差、容易陷入局部极值的问题,提出一种结合A^(*)判断函数的改进RRT算法。对RRT的采样方式进行更改...针对RRT(rapidly-exploring random tree)路径规划算法在高维空间的机械臂避障路径规划时随机产生巨量节点,导致算法运行负担大、避障性能差、容易陷入局部极值的问题,提出一种结合A^(*)判断函数的改进RRT算法。对RRT的采样方式进行更改,每次生成一个包含多个随机采样点的序列,并利用改进的A^(*)判断函数进行排序;对每次生成节点进行距离判断,防止陷入局部搜索;利用重复贪心策略删除冗余节点,利用三次B样条平滑路径。在二维、三维地图及机械臂仿真与样机实验中进行算法性能分析,改进RRT算法能够大量减少到达目标位姿时产生的节点,缓解了局部极值,快速稳定地避开障碍物并到达目标位姿,证明了改进RRT算法的有效性和优越性。展开更多
提出了一种图像编码算法ESPIHT(extended set partitioning in hierarchical trees).该算法能够通过以下3项措施提高SPIHT算法工作效率:(1) 全面引入快速提升小波变换;(2) 重新定义扩充零树结构;(3) 综合考虑人眼视觉特性.实验结果表明,...提出了一种图像编码算法ESPIHT(extended set partitioning in hierarchical trees).该算法能够通过以下3项措施提高SPIHT算法工作效率:(1) 全面引入快速提升小波变换;(2) 重新定义扩充零树结构;(3) 综合考虑人眼视觉特性.实验结果表明, ESPIHT算法是一种高效的图像压缩算法,其编解码速度、图像复原质量、内存需求量等关键技术指标均优于SPIHT等编码算法(特别是在低比特率下).展开更多
超光谱图像作为一种三维图像,其海量的数据导致在有限带宽信道上传输和存储非常困难,必须对它进行有效的压缩编码.提出了一种基于非对称三维小波变换(3D wavelet transform,简称3DWT)和三维集合块分裂的超光谱遥感图像压缩方法.因为大...超光谱图像作为一种三维图像,其海量的数据导致在有限带宽信道上传输和存储非常困难,必须对它进行有效的压缩编码.提出了一种基于非对称三维小波变换(3D wavelet transform,简称3DWT)和三维集合块分裂的超光谱遥感图像压缩方法.因为大多数超光谱图像在各个方向上具有非对称的统计特性,所以利用非对称三维小波变换去除图像的谱间和空间冗余.与传统的对称三维小波变换相比,非对称的三维小波变换能够更有效地去除相邻谱段间的冗余.提出了一种改进的3DSPECK(3D set partitioning embedded block)算法——非对称三维集合分裂块算法(asymmetric transform 3DSPECK,简称AT-3DSPECK),并被用于编码变换后的系数.根据变换系数的能量分布特点,三维零块分裂和三维octave子带分裂方法被有效地结合在所提出的AT-3DSPECK算法中.为了优化率失真和加速编码速度,也给出了一种零块优化排序的快速算法.实验测试表明:AT-3DSPECK算法的平均PSNR(peak signal to noise ratio)分别比AT-3DSPIHT(asymmetric transform 3D set partitioning in hierarchical trees)和3DSPECK算法高0.4dB和1.4dB.此外,AT-3DSPECK还具有比零树算法更快的编码速度.展开更多
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
基金partially funded by the Scientific Research Foundation of Xidian Universitypart of 3DForMod project(ANR-17-EGAS-0002-01)funded in the frame of the JPI FACCE ERA-GAS call funded under European Union’s Horizon 2020 research and innovation program(grant agreement No.696356).
文摘Background:Individual tree extraction from terrestrial laser scanning(TLS)data is a prerequisite for tree-scale estimations of forest biophysical properties.This task currently is undertaken through laborious and time-consuming manual assistance and quality control.This study presents a new fully automatic approach to extract single trees from large-area TLS data.This data-driven method operates exclusively on a point cloud graph by path finding,which makes our method computationally efficient and universally applicable to data from various forest types.Results:We demonstrated the proposed method on two openly available datasets.First,we achieved state-of-the-art performance on locating single trees on a benchmark dataset by significantly improving the mean accuracy by over 10% especially for difficult forest plots.Second,we successfully extracted 270 trees from one hectare temperate forest.Quantitative validation resulted in a mean Intersection over Union(mIoU)of 0.82 for single crown segmentation,which further led to a relative root mean square error(RMSE%)of 21.2% and 23.5% for crown area and tree volume estimations,respectively.Conclusions:Our method allows automated access to individual tree level information from TLS point clouds.The proposed method is free from restricted assumptions of forest types.It is also computationally efficient with an average processing time of several seconds for one million points.It is expected and hoped that our method would contribute to TLS-enabled wide-area forest qualifications,ranging from stand volume and carbon stocks modelling to derivation of tree functional traits as part of the global ecosystem understanding.
基金funded by International University,VNU-HCM under Grant Number T2021-02-IEM.
文摘Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles.In this paper,we propose a novel path planning algorithm-Intermediary RRT*-PSO-by utilizing the exploring speed advantages of Rapidly exploring Random Trees and using its solution to feed to a metaheuristic-based optimizer,Particle swarm optimization(PSO),for fine-tuning and enhancement.In Phase 1,the start and goal trees are initialized at the starting and goal positions,respectively,and the intermediary tree is initialized at a random unexplored region of the search space.The trees were grown until one met the other and then merged and re-initialized in other unexplored regions.If the start and goal trees merge,the first solution is found and passed through a minimization process to reduce unnecessary nodes.Phase 2 begins by feeding the minimized solution from Phase 1 as the global best particle of PSO to optimize the path.After simulating two special benchmark configurations and six practice configurations with special cases,the results of the study concluded that the proposed method is capable of handling small to large,simple to complex continuous environments,whereas it was very tedious for the previous method to achieve.
文摘由于果蔬采摘环境的不确定性和复杂性,机械臂在复杂环境中完成采摘,其路径规划需考虑实时避障。为实现采摘机械臂在不确定环境下安全采摘,提出一种改进RRT的动态避障算法,以提升机械臂在不确定采摘环境的适应性。针对基本快速扩展随机树算法(Rapidly-exploring Random Trees,RRT)在动态环境下迭代时间长、路径长、适应性差等问题,在RRT算法的基础上,引入目标导向策略,把终点以一定概率作为随机采样点的采样方向,提高算法的迭代效率;引入动态检测机制,对已完成规划的初始路径进行实时检测,使算法适应动态变化的环境。通过仿真分析改进RRT算法,结果表明:改进RRT算法的路径减少16%,迭代时间缩短86.5%;同时,动态检测机制使算法适应动态环境。
文摘针对RRT(rapidly-exploring random tree)路径规划算法在高维空间的机械臂避障路径规划时随机产生巨量节点,导致算法运行负担大、避障性能差、容易陷入局部极值的问题,提出一种结合A^(*)判断函数的改进RRT算法。对RRT的采样方式进行更改,每次生成一个包含多个随机采样点的序列,并利用改进的A^(*)判断函数进行排序;对每次生成节点进行距离判断,防止陷入局部搜索;利用重复贪心策略删除冗余节点,利用三次B样条平滑路径。在二维、三维地图及机械臂仿真与样机实验中进行算法性能分析,改进RRT算法能够大量减少到达目标位姿时产生的节点,缓解了局部极值,快速稳定地避开障碍物并到达目标位姿,证明了改进RRT算法的有效性和优越性。
文摘提出了一种图像编码算法ESPIHT(extended set partitioning in hierarchical trees).该算法能够通过以下3项措施提高SPIHT算法工作效率:(1) 全面引入快速提升小波变换;(2) 重新定义扩充零树结构;(3) 综合考虑人眼视觉特性.实验结果表明, ESPIHT算法是一种高效的图像压缩算法,其编解码速度、图像复原质量、内存需求量等关键技术指标均优于SPIHT等编码算法(特别是在低比特率下).
文摘超光谱图像作为一种三维图像,其海量的数据导致在有限带宽信道上传输和存储非常困难,必须对它进行有效的压缩编码.提出了一种基于非对称三维小波变换(3D wavelet transform,简称3DWT)和三维集合块分裂的超光谱遥感图像压缩方法.因为大多数超光谱图像在各个方向上具有非对称的统计特性,所以利用非对称三维小波变换去除图像的谱间和空间冗余.与传统的对称三维小波变换相比,非对称的三维小波变换能够更有效地去除相邻谱段间的冗余.提出了一种改进的3DSPECK(3D set partitioning embedded block)算法——非对称三维集合分裂块算法(asymmetric transform 3DSPECK,简称AT-3DSPECK),并被用于编码变换后的系数.根据变换系数的能量分布特点,三维零块分裂和三维octave子带分裂方法被有效地结合在所提出的AT-3DSPECK算法中.为了优化率失真和加速编码速度,也给出了一种零块优化排序的快速算法.实验测试表明:AT-3DSPECK算法的平均PSNR(peak signal to noise ratio)分别比AT-3DSPIHT(asymmetric transform 3D set partitioning in hierarchical trees)和3DSPECK算法高0.4dB和1.4dB.此外,AT-3DSPECK还具有比零树算法更快的编码速度.