Helicobacter pylori(H. pylori) is a model organism for understanding host-pathogen interactions and infection-mediated carcinogenesis. Gastric cancer and H. pylori colonization indicates the strong correlation. The pr...Helicobacter pylori(H. pylori) is a model organism for understanding host-pathogen interactions and infection-mediated carcinogenesis. Gastric cancer and H. pylori colonization indicates the strong correlation. The progression and exacerbation of H. pylori infection are influenced by some factors of pathogen and host. Several virulence factors involved in the proper adherence and attenuation of immune defense to contribute the risk of emerging gastric cancer, therefore analysis of them is very important. H. pylori also modulates inflammatory and autophagy process to intensify its pathogenicity. From the host regard, different genetic factors particularly affect the development of gastric cancer. Indeed, epigenetic modifications, Micro RNA and long non-coding RNA received more attention. Generally, various factors related to pathogen and host that modulate gastric cancer development in response to H. pylori need more attention due to develop an efficacious therapeutic intervention. Therefore, this paper will present a brief overview of host-pathogen interaction especially emphases on bacterial virulence factors, interruption of host cellular signaling, the role of epigenetic modifications and non-coding RNAs.展开更多
Heterodera avenae (cereal cyst nematode, CCN) infects many cereal crops and causes serious yield losses worldwide. Interaction studies investigating H. avenae and its hosts are still in their infancy. In this study,...Heterodera avenae (cereal cyst nematode, CCN) infects many cereal crops and causes serious yield losses worldwide. Interaction studies investigating H. avenae and its hosts are still in their infancy. In this study, a barley model plant, the Hordeum vulgare cultivar Golden Promise, was investigated for its potential as a candidate model host to study its inter- action with H. avenae. CCN-infective juveniles were attracted by the root tips and gathered around the root elongation zones of Golden Promise on 0.7% water agar plates. The juveniles invaded the roots and developed successfully until maturation at 40 days after inoculation in sterile sand soil. The cryotomy and syncytium measurements indicated that the syncytia enlarged gradually throughout the development of the nematodes and caused the corresponding root regions to swell obviously. Quantitative real-time PCR analysis showed that the down-regulation of defence-related barley genes and up-regulation Of development-related barley ger^es contribute to the understanding of compatible interaction between H. avenae and Golden Promise. Barley stripe mosaic virus (BSMV) virus-induced gene silencing (VIGS) can be used in the roots of Golden Promise. In conclusion, the Hordeum vulgare cultivar Golden Promise is a suitable candidate model host for interaction studies with Heterodera avenae. The studies presented above document the first CCN host that no.t only has published genome context but also be compatible to BSMV VIGS.展开更多
In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogeni...In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogenicity factors produced by pathogens. Proteomics offers a constantly evolving set of novel techniques to study all aspects of protein structure and function. Proteomics aims to find out the identity and amount of each and every protein present in a cell and actual function mediating specific cellular processes. Structural proteomics elucidates the development and application of experimental approaches to define the primary, secondary and tertiary structures of proteins, while functional proteomics refers to the development and application of global (proteome wide or system-wide) experimental approaches to assess protein function. A detail understanding of plant defense response using successful combination of proteomic techniques and other high throughput techniques of cell biology, biochemistry as well as genomics is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to gel- and non gel-based proteomic techniques followed by the basics of plant-pathogen interaction, the use of proteomics in recent pasts to decipher the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.展开更多
Ruminants utilize a wide variety of dietary substrates that are not digestible by the mammals, through microbial fermentation taking place in the rumen. Recent advanced molecular based approaches have allowed the char...Ruminants utilize a wide variety of dietary substrates that are not digestible by the mammals, through microbial fermentation taking place in the rumen. Recent advanced molecular based approaches have allowed the characterization of rumen microbiota and its compositional changes under various treatment conditions.However, the knowledge is still limited on the impacts of variations in the rumen microbiota on host biology and function. This review summarizes the information to date on host-microbial interactions in the rumen and how we can apply such information to seek the opportunities to enhance the animal performance through manipulating the rumen function.展开更多
Micro RNAs(mi RNAs) are small noncoding RNAs. More than 2500 mature mi RNAs are detected in plants, animals and several types of viruses. Hepatitis C virus(HCV), which is a positive-sense, singlestranded RNA virus, do...Micro RNAs(mi RNAs) are small noncoding RNAs. More than 2500 mature mi RNAs are detected in plants, animals and several types of viruses. Hepatitis C virus(HCV), which is a positive-sense, singlestranded RNA virus, does not encode viral mi RNA. However, HCV infection alters the expression of host mi RNAs, either in cell culture or in patients with liver disease progression, such as liver fibrosis, cirrhosis, and hepatocellular carcinoma. In turn, host mi RNAs regulate HCV life cycle through directly binding to HCV RNAs or indirectly targeting cellular m RNAs. Increasing evidence demonstrates that mi RNAs are one of the centered factors in the interaction network between virus and host. The competitive viral and host RNA hypothesis proposes a latent cross-regulation pattern between host m RNAs and HCV RNAs. High loads of HCV RNA sequester and de-repress host mi RNAs from their normal host targets and thus disturb host gene expression, indicating a means of adaptation for HCV to establish a persistent infection. Some special mi RNAs are closely correlated with liver-specific disease progression and the changed levels of mi RNAs are even higher sensitivity and specificity than those of traditional proteins. Therefore, some of them can serve as novel diagnostic/prognostic biomarkers in HCVinfected patients with liver diseases. They are also attractive therapeutic targets for development of new anti-HCV agents.展开更多
Blast disease,caused by the hemibiotrophic ascomycete fungus,Magnaporthe oryzae,is a significant threat to sustainable rice production worldwide.Studies have shown that the blast fungus secretes vast arrays of functio...Blast disease,caused by the hemibiotrophic ascomycete fungus,Magnaporthe oryzae,is a significant threat to sustainable rice production worldwide.Studies have shown that the blast fungus secretes vast arrays of functionally diverse proteins into the host cell for a successful disease progression.However,the final destinations of these effector proteins inside the host cell and their role in advancing fungal pathogenesis remain a mystery.Here,we reported that a putative mitochondrial targeting non-classically secreted protein(MoMtp)positively regulates conidiogenesis and appressorium maturation in M.oryzae.Moreover,MoM TP gene deletion mutant strains triggered a hypersensitive response when inoculated on rice leaves displaying that MoMtp is essential for the virulence of M.oryzae.In addition,cell wall and oxidative stress results indicated that MoMtp is likely involved in the maintenance of the structural integrity of the fungus cell.Our study also demonstrates an upregulation in the expression pattern of the MoMTP gene at all stages of infection,indicating its possible regulatory role in host invasion and the infectious development of M.oryzae.Furthermore,Agrobacterium infiltration and sheath inoculation confirmed that MoMtpGFP protein is predominantly localized in the host mitochondria of tobacco leaf and rice cells.Taken together,we conclude that MoMtp protein likely promotes the normal conidiation and pathogenesis of M.oryzae and might have a role in disturbing the proper functioning of the host mitochondria during pathogen invasion.展开更多
Ursolic acid(UA) and oleanolic acid(OA) are insoluble drugs. The objective of this study was to encapsulate them into β-cyclodextrin(β-CD) and compare the solubility and intermolecular force of β-CD with the two is...Ursolic acid(UA) and oleanolic acid(OA) are insoluble drugs. The objective of this study was to encapsulate them into β-cyclodextrin(β-CD) and compare the solubility and intermolecular force of β-CD with the two isomeric triterpenic acids. The host-guest interaction was explored in liquid and solid state by ultraviolet-visible absorption,1H NMR, phase solubility analysis, and differential scanning calorimetry, X-ray powder diffractometry, and molecular modeling studies. Both experimental and theoretical studies revealed that β-CD formed 1: 1 water soluble inclusion complexes and the complexation process was naturally favorable. In addition, the overall results suggested that ring E with a carboxyl group of the drug was encapsulated into the hydrophobic CD nanocavity. Therefore, a clear different inclusion behavior was observed, and UA exhibited better affinity to β-CD compared with OA in various media due to little steric interference, which was beneficial to form stable inclusion complex with β-CD and increase its water solubility effectively.展开更多
With constant economic development and continuous improvement of living standards in Northeast China,rural tourism,as a new type of tourism,is increasingly favored. From the perspective of symbolic interaction theory,...With constant economic development and continuous improvement of living standards in Northeast China,rural tourism,as a new type of tourism,is increasingly favored. From the perspective of symbolic interaction theory,taking the current situation of rural tourism in Northeast China as an example,this paper explained the semiotic significance between hosts and guests in rural tourism. It established the evaluation indicators for authentic symbolic perception of rural tourism. Also,combined with the theories of sociology and anthropology,it studied the interaction between hosts and tourists of rural tourism in Northeast China.展开更多
Ralstonia solanacearum is an important model phytopathogenic bacterium that causes bacterial wilt disease on many plant species and leads to serious economic losses. The interactions between R. solanacearum and host p...Ralstonia solanacearum is an important model phytopathogenic bacterium that causes bacterial wilt disease on many plant species and leads to serious economic losses. The interactions between R. solanacearum and host plants have become a model system for the study of plants and pathogens interactions. This paper reviews the advances on the molecular mechanisms between R. solanacearum and hosts interaction including the formation of plant innate immunity, the suppression of plant innate immunity by this pathogen and the activation of effector-triggered immunity. Furthermore, we made a prospect on how to utilize the interaction mechanism between R. solanacearum and hosts to control the disease.展开更多
Ranaviruses are harmful viruses that infect amphibians, fish, and reptiles, and have caused particularly devastating declines in amphibian populations. One particular type of ranavirus, called Frog Virus 3 (FV3), has ...Ranaviruses are harmful viruses that infect amphibians, fish, and reptiles, and have caused particularly devastating declines in amphibian populations. One particular type of ranavirus, called Frog Virus 3 (FV3), has been extensively studied due to its prevalence and impact on amphibians. Previous research has primarily focused on the virus’s genes, but little attention has been given to the non-coding regions of its genome. This article reviews recent studies that reveal the ability of ranaviruses, including FV3, to encode microRNA (miRNA), a type of regulatory RNA. These viral miRNAs play a crucial role in suppressing frog immune genes, modulating the virus-host interaction, and promoting viral infection. Understanding how ranaviruses use miRNAs to control disease progression is essential for addressing the health threat they pose to wildlife and ecosystems.展开更多
The bitterness of a drug is a major challenge for patient acceptability and compliance,especially for children.Due to the toxicity of medication,a human taste panel test has certain limitations.Atomoxetine hydrochlori...The bitterness of a drug is a major challenge for patient acceptability and compliance,especially for children.Due to the toxicity of medication,a human taste panel test has certain limitations.Atomoxetine hydrochloride(HCl),which is used for the treatment of attention deficit/hyperactivity disorder(ADHD),has an extremely bitter taste.The aim of this work is to quantitatively predict the bitterness of atomoxetine HCl by a biosensor system.Based on the mechanism of detection of the electronic tongue(Etongue),the bitterness of atomoxetine HCl was evaluated,and it was found that its bitterness was similar to that of quinine HCl.The bitterness threshold of atomoxetine HCl was 8.61μg/ml based on the Change of membrane Potential caused by Adsorption(CPA)value of the BT0 sensor.In this study,the taste-masking efficiency of 2-hydroxypropyl-β-cyclodextrin(HP-β-CyD)was assessed by Euclidean distances on a principle component analysis(PCA)map with the SA402B Taste Sensing System,and the host–guest interactions were investigated by differential scanning calorimetry(DSC),powder X-ray diffraction(XRD),nuclear magnetic resonance(NMR)spectroscopy and scanning electron microscopy(SEM).Biosensor evaluation and characterization of the inclusion complex indicated that atomoxetine HCl could actively react with 2-hydroxypropyl-β-cyclodextrin.展开更多
Marek’s disease (MD) is a lymphoproliferative disease of domestic chickens caused by Marek’s disease virus (MDV), an oncogenic and highly contagious α-herpesvirus. MD has been controlled by vaccination but sporadic...Marek’s disease (MD) is a lymphoproliferative disease of domestic chickens caused by Marek’s disease virus (MDV), an oncogenic and highly contagious α-herpesvirus. MD has been controlled by vaccination but sporadic outbreaks of MD still occur in some parts of the world. Efforts to improve vaccine efficacy have continued in both research communities and vaccine industries. We reported the host genetic variation affecting Marek’s disease vaccine-induced immunity in chickens earlier. In this study, we evaluated chicken lines, vaccines, and line by vaccine interaction on the protective efficacy of vaccination against MD. Specific pathogen free chickens from the relatively resistant line 63 and the highly susceptible line 72 were primarily used to evaluate the protection by three kinds of vaccines (rMd5ΔMeq, CVI988/Rispens, and HVT) upon challenge with a very virulent plus strain of MDV, vv+648A. Our data confirmed that both the chicken line and the vaccine significantly affected the protective efficacy of vaccination and showed that a chicken line by vaccine interaction, in most of the trials, also altered vaccine protective efficacy. More interestingly, although the protective index of all vaccine strains was higher in resistant than in susceptible line of chickens, the difference for HVT protection was striking and warrants further study. The findings may have important implications for vaccine development as well as for selective use of particular vaccines in specific lines of chickens to achieve maximum protection at minimized costs.展开更多
A year-long survey of some physical parameters (water temperature, dissolved oxygen, pH, turbidity), chemical parameters (Biological Oxygen Demand "BOD", Chemical Oxygen Demand "COD", nitrate, ammonia, orthopho...A year-long survey of some physical parameters (water temperature, dissolved oxygen, pH, turbidity), chemical parameters (Biological Oxygen Demand "BOD", Chemical Oxygen Demand "COD", nitrate, ammonia, orthophosphate) and some biological (zooplankton) and microbiological (total bacteria, indicator bacteria, pathogenic bacteria) components in Domat AI-Gandal Lake was conducted. Water samples were collected seasonally from spring 2004 to winter 2005. Four locations on the Lake were sampled in order to evaluate the condition of the Lake. To investigate the possible effect of zooplankton in controlling the presence of faecal indicator bacteria, a 24 hour experiment was carried out to examine this hypothesis as well as the grazing pressure of zooplankton on the bacterial community of the Lake. The results showed that variations in season temperature affected the zooplankton and density of bacteria in the Lake. Zooplankton was composed by Protozoa 75%, Rotifera 20.6%, Cladocera 3% and Copepoda 2%. The reduction rates for the tested faecal pollution indicators in presence of zooplankton predators were remarkable (up to 99%). In conclusion zooplankton, especially protozoa, was found to play an important role as biological control against bacterial indicators of faecal pollution.展开更多
Plant-associated microbes represent a key determinant of plant fitness through acquiring nutrients,promoting growth,and resisting to abiotic and biotic stresses.However,an extensive characterization of the bacterial a...Plant-associated microbes represent a key determinant of plant fitness through acquiring nutrients,promoting growth,and resisting to abiotic and biotic stresses.However,an extensive characterization of the bacterial and fungal microbiomes present in different plant compartments of soybean in field conditions has remained elusive.In this study,we investigated the effects of four niches(roots,stems,leaves,and pods),four genotypes(Andou 203,Hedou 12,Sanning 16,and Zhonghuang 13),and three field locations(Jining,Suzhou,and Xuzhou)on the diversity and composition of bacterial and fungal communities in soybean using 16S and internal transcribed spacer rRNA amplicon sequencing,respectively.The soybean microbiome significantly differed across organs.Host genotypes explained more variation in stem bacterial community composition and leaf fungal community composition.Field location significantly affected the composition of bacterial communities in all compartments and the effects were stronger in the root and stem than in the leaf and pod,whereas field location explained more variation in stem and leaf fungal community composition than in the root and pod.The relative abundances of potential soybean fungal pathogens also differed among host organs and genotypes,reflecting the niches of these microbes in the host and probably their compatibility to the host genotypes.Systematic profiling of the microbiome composition and diversity will aid the development of plant protection technologies to benefit soybean health.展开更多
文摘Helicobacter pylori(H. pylori) is a model organism for understanding host-pathogen interactions and infection-mediated carcinogenesis. Gastric cancer and H. pylori colonization indicates the strong correlation. The progression and exacerbation of H. pylori infection are influenced by some factors of pathogen and host. Several virulence factors involved in the proper adherence and attenuation of immune defense to contribute the risk of emerging gastric cancer, therefore analysis of them is very important. H. pylori also modulates inflammatory and autophagy process to intensify its pathogenicity. From the host regard, different genetic factors particularly affect the development of gastric cancer. Indeed, epigenetic modifications, Micro RNA and long non-coding RNA received more attention. Generally, various factors related to pathogen and host that modulate gastric cancer development in response to H. pylori need more attention due to develop an efficacious therapeutic intervention. Therefore, this paper will present a brief overview of host-pathogen interaction especially emphases on bacterial virulence factors, interruption of host cellular signaling, the role of epigenetic modifications and non-coding RNAs.
基金supported by the National Natural Science Foundation of China(31571988)the Special Fund for Agro-scientific Research in the Public Interest, China (201503114)the National Key Basic Research Program of China (973 Program, 2013CB127502)
文摘Heterodera avenae (cereal cyst nematode, CCN) infects many cereal crops and causes serious yield losses worldwide. Interaction studies investigating H. avenae and its hosts are still in their infancy. In this study, a barley model plant, the Hordeum vulgare cultivar Golden Promise, was investigated for its potential as a candidate model host to study its inter- action with H. avenae. CCN-infective juveniles were attracted by the root tips and gathered around the root elongation zones of Golden Promise on 0.7% water agar plates. The juveniles invaded the roots and developed successfully until maturation at 40 days after inoculation in sterile sand soil. The cryotomy and syncytium measurements indicated that the syncytia enlarged gradually throughout the development of the nematodes and caused the corresponding root regions to swell obviously. Quantitative real-time PCR analysis showed that the down-regulation of defence-related barley genes and up-regulation Of development-related barley ger^es contribute to the understanding of compatible interaction between H. avenae and Golden Promise. Barley stripe mosaic virus (BSMV) virus-induced gene silencing (VIGS) can be used in the roots of Golden Promise. In conclusion, the Hordeum vulgare cultivar Golden Promise is a suitable candidate model host for interaction studies with Heterodera avenae. The studies presented above document the first CCN host that no.t only has published genome context but also be compatible to BSMV VIGS.
文摘In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogenicity factors produced by pathogens. Proteomics offers a constantly evolving set of novel techniques to study all aspects of protein structure and function. Proteomics aims to find out the identity and amount of each and every protein present in a cell and actual function mediating specific cellular processes. Structural proteomics elucidates the development and application of experimental approaches to define the primary, secondary and tertiary structures of proteins, while functional proteomics refers to the development and application of global (proteome wide or system-wide) experimental approaches to assess protein function. A detail understanding of plant defense response using successful combination of proteomic techniques and other high throughput techniques of cell biology, biochemistry as well as genomics is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to gel- and non gel-based proteomic techniques followed by the basics of plant-pathogen interaction, the use of proteomics in recent pasts to decipher the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.
文摘Ruminants utilize a wide variety of dietary substrates that are not digestible by the mammals, through microbial fermentation taking place in the rumen. Recent advanced molecular based approaches have allowed the characterization of rumen microbiota and its compositional changes under various treatment conditions.However, the knowledge is still limited on the impacts of variations in the rumen microbiota on host biology and function. This review summarizes the information to date on host-microbial interactions in the rumen and how we can apply such information to seek the opportunities to enhance the animal performance through manipulating the rumen function.
基金Supported by National Natural Science Foundation of China No.81321004 and No.81322050National Mega-Project for“R&D for Innovative Drugs”+3 种基金Ministry of Science and TechnologyChina No.2012ZX09301-002-001Ministry of EducationChina No.NCET-12-0072
文摘Micro RNAs(mi RNAs) are small noncoding RNAs. More than 2500 mature mi RNAs are detected in plants, animals and several types of viruses. Hepatitis C virus(HCV), which is a positive-sense, singlestranded RNA virus, does not encode viral mi RNA. However, HCV infection alters the expression of host mi RNAs, either in cell culture or in patients with liver disease progression, such as liver fibrosis, cirrhosis, and hepatocellular carcinoma. In turn, host mi RNAs regulate HCV life cycle through directly binding to HCV RNAs or indirectly targeting cellular m RNAs. Increasing evidence demonstrates that mi RNAs are one of the centered factors in the interaction network between virus and host. The competitive viral and host RNA hypothesis proposes a latent cross-regulation pattern between host m RNAs and HCV RNAs. High loads of HCV RNA sequester and de-repress host mi RNAs from their normal host targets and thus disturb host gene expression, indicating a means of adaptation for HCV to establish a persistent infection. Some special mi RNAs are closely correlated with liver-specific disease progression and the changed levels of mi RNAs are even higher sensitivity and specificity than those of traditional proteins. Therefore, some of them can serve as novel diagnostic/prognostic biomarkers in HCVinfected patients with liver diseases. They are also attractive therapeutic targets for development of new anti-HCV agents.
基金funded by the National Natural Science Foundation of China(32172364 to Shihong Zhang and 32272513 to Zonghua Wang)Fujian Agriculture and Forestry University scholarship,China for Wajjiha Batool。
文摘Blast disease,caused by the hemibiotrophic ascomycete fungus,Magnaporthe oryzae,is a significant threat to sustainable rice production worldwide.Studies have shown that the blast fungus secretes vast arrays of functionally diverse proteins into the host cell for a successful disease progression.However,the final destinations of these effector proteins inside the host cell and their role in advancing fungal pathogenesis remain a mystery.Here,we reported that a putative mitochondrial targeting non-classically secreted protein(MoMtp)positively regulates conidiogenesis and appressorium maturation in M.oryzae.Moreover,MoM TP gene deletion mutant strains triggered a hypersensitive response when inoculated on rice leaves displaying that MoMtp is essential for the virulence of M.oryzae.In addition,cell wall and oxidative stress results indicated that MoMtp is likely involved in the maintenance of the structural integrity of the fungus cell.Our study also demonstrates an upregulation in the expression pattern of the MoMTP gene at all stages of infection,indicating its possible regulatory role in host invasion and the infectious development of M.oryzae.Furthermore,Agrobacterium infiltration and sheath inoculation confirmed that MoMtpGFP protein is predominantly localized in the host mitochondria of tobacco leaf and rice cells.Taken together,we conclude that MoMtp protein likely promotes the normal conidiation and pathogenesis of M.oryzae and might have a role in disturbing the proper functioning of the host mitochondria during pathogen invasion.
基金supported by grants from the National Natural Science Foundation of China (21303086)the Natural Science Foundation of Jiangsu Province (BK20130884)the Research Fund for Doctoral Program of Higher Education (20123234120012)
文摘Ursolic acid(UA) and oleanolic acid(OA) are insoluble drugs. The objective of this study was to encapsulate them into β-cyclodextrin(β-CD) and compare the solubility and intermolecular force of β-CD with the two isomeric triterpenic acids. The host-guest interaction was explored in liquid and solid state by ultraviolet-visible absorption,1H NMR, phase solubility analysis, and differential scanning calorimetry, X-ray powder diffractometry, and molecular modeling studies. Both experimental and theoretical studies revealed that β-CD formed 1: 1 water soluble inclusion complexes and the complexation process was naturally favorable. In addition, the overall results suggested that ring E with a carboxyl group of the drug was encapsulated into the hydrophobic CD nanocavity. Therefore, a clear different inclusion behavior was observed, and UA exhibited better affinity to β-CD compared with OA in various media due to little steric interference, which was beneficial to form stable inclusion complex with β-CD and increase its water solubility effectively.
基金Supported by Student Innovation Project of University of Science and Technology Liaoning in 2017(201710146000016)
文摘With constant economic development and continuous improvement of living standards in Northeast China,rural tourism,as a new type of tourism,is increasingly favored. From the perspective of symbolic interaction theory,taking the current situation of rural tourism in Northeast China as an example,this paper explained the semiotic significance between hosts and guests in rural tourism. It established the evaluation indicators for authentic symbolic perception of rural tourism. Also,combined with the theories of sociology and anthropology,it studied the interaction between hosts and tourists of rural tourism in Northeast China.
基金Supported by Fundamental Research Funds for the Central Universities(110201202002)
文摘Ralstonia solanacearum is an important model phytopathogenic bacterium that causes bacterial wilt disease on many plant species and leads to serious economic losses. The interactions between R. solanacearum and host plants have become a model system for the study of plants and pathogens interactions. This paper reviews the advances on the molecular mechanisms between R. solanacearum and hosts interaction including the formation of plant innate immunity, the suppression of plant innate immunity by this pathogen and the activation of effector-triggered immunity. Furthermore, we made a prospect on how to utilize the interaction mechanism between R. solanacearum and hosts to control the disease.
文摘Ranaviruses are harmful viruses that infect amphibians, fish, and reptiles, and have caused particularly devastating declines in amphibian populations. One particular type of ranavirus, called Frog Virus 3 (FV3), has been extensively studied due to its prevalence and impact on amphibians. Previous research has primarily focused on the virus’s genes, but little attention has been given to the non-coding regions of its genome. This article reviews recent studies that reveal the ability of ranaviruses, including FV3, to encode microRNA (miRNA), a type of regulatory RNA. These viral miRNAs play a crucial role in suppressing frog immune genes, modulating the virus-host interaction, and promoting viral infection. Understanding how ranaviruses use miRNAs to control disease progression is essential for addressing the health threat they pose to wildlife and ecosystems.
基金Support received from the National Major Scientific and Technological Special Project for“Significant New Drugs Development”during the Thirteenth Five-year Plan Period,P.R.China(2018ZX09721003-002-004)the Major Research Project of Shandong Province,P.R.China(2018GSF118004)the Key Research and Development Program of Shandong Province,P.R.China(2018CXGC1411)for their support and encouragement in carrying out this work.
文摘The bitterness of a drug is a major challenge for patient acceptability and compliance,especially for children.Due to the toxicity of medication,a human taste panel test has certain limitations.Atomoxetine hydrochloride(HCl),which is used for the treatment of attention deficit/hyperactivity disorder(ADHD),has an extremely bitter taste.The aim of this work is to quantitatively predict the bitterness of atomoxetine HCl by a biosensor system.Based on the mechanism of detection of the electronic tongue(Etongue),the bitterness of atomoxetine HCl was evaluated,and it was found that its bitterness was similar to that of quinine HCl.The bitterness threshold of atomoxetine HCl was 8.61μg/ml based on the Change of membrane Potential caused by Adsorption(CPA)value of the BT0 sensor.In this study,the taste-masking efficiency of 2-hydroxypropyl-β-cyclodextrin(HP-β-CyD)was assessed by Euclidean distances on a principle component analysis(PCA)map with the SA402B Taste Sensing System,and the host–guest interactions were investigated by differential scanning calorimetry(DSC),powder X-ray diffraction(XRD),nuclear magnetic resonance(NMR)spectroscopy and scanning electron microscopy(SEM).Biosensor evaluation and characterization of the inclusion complex indicated that atomoxetine HCl could actively react with 2-hydroxypropyl-β-cyclodextrin.
文摘Marek’s disease (MD) is a lymphoproliferative disease of domestic chickens caused by Marek’s disease virus (MDV), an oncogenic and highly contagious α-herpesvirus. MD has been controlled by vaccination but sporadic outbreaks of MD still occur in some parts of the world. Efforts to improve vaccine efficacy have continued in both research communities and vaccine industries. We reported the host genetic variation affecting Marek’s disease vaccine-induced immunity in chickens earlier. In this study, we evaluated chicken lines, vaccines, and line by vaccine interaction on the protective efficacy of vaccination against MD. Specific pathogen free chickens from the relatively resistant line 63 and the highly susceptible line 72 were primarily used to evaluate the protection by three kinds of vaccines (rMd5ΔMeq, CVI988/Rispens, and HVT) upon challenge with a very virulent plus strain of MDV, vv+648A. Our data confirmed that both the chicken line and the vaccine significantly affected the protective efficacy of vaccination and showed that a chicken line by vaccine interaction, in most of the trials, also altered vaccine protective efficacy. More interestingly, although the protective index of all vaccine strains was higher in resistant than in susceptible line of chickens, the difference for HVT protection was striking and warrants further study. The findings may have important implications for vaccine development as well as for selective use of particular vaccines in specific lines of chickens to achieve maximum protection at minimized costs.
文摘A year-long survey of some physical parameters (water temperature, dissolved oxygen, pH, turbidity), chemical parameters (Biological Oxygen Demand "BOD", Chemical Oxygen Demand "COD", nitrate, ammonia, orthophosphate) and some biological (zooplankton) and microbiological (total bacteria, indicator bacteria, pathogenic bacteria) components in Domat AI-Gandal Lake was conducted. Water samples were collected seasonally from spring 2004 to winter 2005. Four locations on the Lake were sampled in order to evaluate the condition of the Lake. To investigate the possible effect of zooplankton in controlling the presence of faecal indicator bacteria, a 24 hour experiment was carried out to examine this hypothesis as well as the grazing pressure of zooplankton on the bacterial community of the Lake. The results showed that variations in season temperature affected the zooplankton and density of bacteria in the Lake. Zooplankton was composed by Protozoa 75%, Rotifera 20.6%, Cladocera 3% and Copepoda 2%. The reduction rates for the tested faecal pollution indicators in presence of zooplankton predators were remarkable (up to 99%). In conclusion zooplankton, especially protozoa, was found to play an important role as biological control against bacterial indicators of faecal pollution.
基金supported by grants from the earmarked fund for China Agriculture Research System(CARS004-PS14)the National Key R&D Program of China(2018YFD0201000)the Special Fund for Agroscientific Research in the Public Interest,China(201303018)。
文摘Plant-associated microbes represent a key determinant of plant fitness through acquiring nutrients,promoting growth,and resisting to abiotic and biotic stresses.However,an extensive characterization of the bacterial and fungal microbiomes present in different plant compartments of soybean in field conditions has remained elusive.In this study,we investigated the effects of four niches(roots,stems,leaves,and pods),four genotypes(Andou 203,Hedou 12,Sanning 16,and Zhonghuang 13),and three field locations(Jining,Suzhou,and Xuzhou)on the diversity and composition of bacterial and fungal communities in soybean using 16S and internal transcribed spacer rRNA amplicon sequencing,respectively.The soybean microbiome significantly differed across organs.Host genotypes explained more variation in stem bacterial community composition and leaf fungal community composition.Field location significantly affected the composition of bacterial communities in all compartments and the effects were stronger in the root and stem than in the leaf and pod,whereas field location explained more variation in stem and leaf fungal community composition than in the root and pod.The relative abundances of potential soybean fungal pathogens also differed among host organs and genotypes,reflecting the niches of these microbes in the host and probably their compatibility to the host genotypes.Systematic profiling of the microbiome composition and diversity will aid the development of plant protection technologies to benefit soybean health.